==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER STRUCTURAL GENOMICS, UNKNOWN FUNCTION 09-OCT-04 1XPV . COMPND 2 MOLECULE: HYPOTHETICAL PROTEIN XCC2852; . SOURCE 2 ORGANISM_SCIENTIFIC: XANTHOMONAS CAMPESTRIS; . AUTHOR Y.SHAO,T.B.ACTON,G.LIU,L.MA,Y.SHEN,R.XIAO,G.T.MONTELIONE, . 78 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5562.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 49 62.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 5 6.4 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 7.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 1.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 9 11.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 7.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 21 26.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 202 0, 0.0 3,-0.1 0, 0.0 28,-0.0 0.000 360.0 360.0 360.0 -50.5 12.3 -1.9 0.8 2 2 A A - 0 0 26 1,-0.3 27,-0.1 51,-0.1 75,-0.0 0.376 360.0 -28.3 -90.7-135.2 9.3 -2.2 -1.6 3 3 A L - 0 0 24 25,-0.5 27,-1.2 50,-0.1 -1,-0.3 -0.138 54.2-148.8 -75.5 176.7 5.9 -0.7 -1.1 4 4 A T E -aB 30 52A 24 48,-1.6 48,-2.7 25,-0.1 2,-0.7 -0.828 12.2-175.6-156.0 110.8 4.3 0.1 2.3 5 5 A L E -aB 31 51A 2 25,-1.2 27,-0.8 -2,-0.3 46,-0.2 -0.900 20.3-146.2-112.6 102.7 0.6 0.1 3.1 6 6 A Y E +a 32 0A 31 44,-1.6 44,-0.4 -2,-0.7 2,-0.3 -0.434 24.3 176.5 -68.7 137.3 -0.1 1.3 6.6 7 7 A Q E -a 33 0A 34 25,-2.4 27,-2.0 -2,-0.1 28,-0.5 -0.894 14.0-155.1-138.2 166.5 -3.0 -0.4 8.4 8 8 A R - 0 0 103 2,-0.3 6,-0.1 -2,-0.3 25,-0.0 -0.831 42.9 -54.0-136.5 173.6 -4.7 -0.4 11.8 9 9 A D S S+ 0 0 105 -2,-0.3 -1,-0.3 2,-0.1 25,-0.0 0.051 105.0 33.3 -43.5 158.7 -6.8 -2.7 14.0 10 10 A D S S- 0 0 115 1,-0.1 2,-0.5 -3,-0.1 -2,-0.3 0.507 82.9-115.6 62.8 143.5 -9.9 -4.0 12.3 11 11 A C S S+ 0 0 76 1,-0.1 -1,-0.1 2,-0.1 -2,-0.1 -0.966 77.3 81.8-117.5 121.7 -10.1 -4.8 8.6 12 12 A H S > S+ 0 0 129 -2,-0.5 4,-1.9 0, 0.0 5,-0.1 -0.037 88.4 43.0-174.6 -64.3 -12.4 -2.8 6.4 13 13 A L H > S+ 0 0 58 1,-0.2 4,-0.9 2,-0.2 -2,-0.1 0.912 124.4 39.2 -67.7 -44.1 -11.0 0.5 5.3 14 14 A C H > S+ 0 0 7 -4,-0.2 4,-2.7 2,-0.2 -1,-0.2 0.769 107.7 67.8 -75.1 -27.1 -7.6 -1.0 4.6 15 15 A D H > S+ 0 0 90 1,-0.2 4,-2.0 2,-0.2 -2,-0.2 0.950 100.0 46.6 -55.9 -53.7 -9.4 -4.0 3.2 16 16 A Q H X S+ 0 0 127 -4,-1.9 4,-2.0 1,-0.2 -1,-0.2 0.835 110.2 56.2 -57.6 -34.4 -10.7 -2.1 0.3 17 17 A A H X S+ 0 0 0 -4,-0.9 4,-2.3 1,-0.2 -1,-0.2 0.945 105.6 48.6 -62.8 -50.3 -7.2 -0.7 -0.1 18 18 A V H X S+ 0 0 63 -4,-2.7 4,-3.5 1,-0.2 5,-0.2 0.852 108.0 57.9 -57.6 -36.0 -5.7 -4.1 -0.4 19 19 A E H X S+ 0 0 99 -4,-2.0 4,-3.2 1,-0.2 -1,-0.2 0.930 106.8 45.7 -59.8 -48.6 -8.4 -4.9 -2.9 20 20 A A H X S+ 0 0 13 -4,-2.0 4,-3.1 2,-0.2 -1,-0.2 0.871 114.1 51.0 -62.3 -38.1 -7.3 -2.0 -5.1 21 21 A L H X>S+ 0 0 3 -4,-2.3 5,-2.2 2,-0.2 4,-0.8 0.969 112.9 43.0 -63.0 -56.0 -3.7 -3.2 -4.7 22 22 A A H ><5S+ 0 0 62 -4,-3.5 3,-0.9 1,-0.2 -2,-0.2 0.920 116.5 49.2 -55.4 -47.1 -4.4 -6.7 -5.6 23 23 A Q H 3<5S+ 0 0 123 -4,-3.2 -1,-0.2 1,-0.3 -2,-0.2 0.917 109.3 50.6 -58.5 -46.5 -6.6 -5.5 -8.5 24 24 A A H 3<5S- 0 0 4 -4,-3.1 -1,-0.3 -5,-0.2 -2,-0.2 0.621 110.4-130.7 -66.8 -12.0 -3.9 -3.2 -9.6 25 25 A R T <<5 + 0 0 209 -3,-0.9 -3,-0.2 -4,-0.8 -2,-0.1 0.876 47.7 162.4 62.1 39.3 -1.7 -6.2 -9.4 26 26 A A < - 0 0 29 -5,-2.2 2,-0.4 1,-0.2 -4,-0.1 0.966 33.2-147.5 -51.5 -62.4 0.9 -4.3 -7.4 27 27 A G - 0 0 54 -6,-0.1 2,-0.2 2,-0.0 -1,-0.2 -0.992 42.0 -4.8 132.6-138.0 2.6 -7.4 -6.1 28 28 A A + 0 0 90 -2,-0.4 -25,-0.5 2,-0.0 2,-0.3 -0.625 65.3 151.8 -94.9 154.8 4.4 -8.1 -2.9 29 29 A F - 0 0 66 -2,-0.2 2,-0.4 -27,-0.1 -25,-0.1 -0.939 40.7 -91.1-164.2-178.9 5.0 -5.5 -0.2 30 30 A F E -a 4 0A 114 -27,-1.2 -25,-1.2 -2,-0.3 2,-0.4 -0.914 28.8-144.9-113.6 136.9 5.4 -4.9 3.5 31 31 A S E -a 5 0A 50 -2,-0.4 2,-0.4 -27,-0.2 -25,-0.2 -0.804 11.4-164.1-101.4 140.2 2.7 -4.1 6.0 32 32 A V E -a 6 0A 48 -27,-0.8 -25,-2.4 -2,-0.4 2,-0.5 -0.990 11.5-141.7-127.3 131.0 3.1 -1.8 8.9 33 33 A F E -a 7 0A 112 -2,-0.4 4,-0.2 -27,-0.2 -25,-0.2 -0.810 9.9-169.8 -95.3 124.7 0.8 -1.5 11.9 34 34 A I > + 0 0 0 -27,-2.0 2,-2.6 -2,-0.5 3,-1.3 0.657 67.3 98.1 -82.6 -18.2 0.3 2.0 13.3 35 35 A D T 3 S+ 0 0 90 -28,-0.5 -1,-0.1 1,-0.2 3,-0.1 -0.458 89.1 35.2 -72.3 75.7 -1.4 0.4 16.3 36 36 A D T 3 S+ 0 0 115 -2,-2.6 2,-0.6 1,-0.0 -1,-0.2 0.058 104.7 69.4 169.0 -32.6 1.7 0.7 18.5 37 37 A D X> - 0 0 86 -3,-1.3 4,-2.3 -4,-0.2 3,-0.5 -0.921 54.4-168.7-114.4 106.4 3.4 3.9 17.4 38 38 A A H 3> S+ 0 0 78 -2,-0.6 4,-3.8 1,-0.3 5,-0.3 0.838 89.8 64.0 -58.9 -33.9 1.5 7.0 18.4 39 39 A A H 3> S+ 0 0 75 1,-0.2 4,-2.1 2,-0.2 -1,-0.3 0.914 107.5 40.4 -55.6 -46.0 3.8 8.9 16.2 40 40 A L H <>>S+ 0 0 39 -3,-0.5 4,-3.8 2,-0.2 5,-0.6 0.868 114.4 53.9 -70.3 -37.9 2.4 7.0 13.2 41 41 A E H <5S+ 0 0 75 -4,-2.3 -2,-0.2 -7,-0.4 -1,-0.2 0.911 112.6 42.6 -61.9 -44.8 -1.1 7.3 14.6 42 42 A S H <5S+ 0 0 112 -4,-3.8 -1,-0.2 1,-0.2 -2,-0.2 0.856 116.8 48.6 -69.4 -36.5 -0.7 11.1 14.9 43 43 A A H <5S+ 0 0 63 -4,-2.1 -2,-0.2 -5,-0.3 -1,-0.2 0.941 139.0 2.2 -67.9 -49.3 0.9 11.2 11.5 44 44 A Y T ><5S+ 0 0 28 -4,-3.8 2,-2.2 -5,-0.1 3,-2.2 0.848 78.9 138.2-100.6 -71.9 -1.7 9.0 9.8 45 45 A G G > - 0 0 78 -2,-0.2 4,-1.2 1,-0.1 5,-0.1 -0.603 33.2-100.0-127.1-172.6 -8.9 2.9 -7.9 65 65 A A H > S+ 0 0 25 -2,-0.2 4,-2.1 2,-0.2 5,-0.1 0.931 124.4 35.3 -77.1 -49.8 -7.2 -0.1 -9.6 66 66 A P H > S+ 0 0 96 0, 0.0 4,-2.0 0, 0.0 -1,-0.1 0.737 119.9 52.0 -75.0 -24.4 -6.1 1.8 -12.7 67 67 A R H > S+ 0 0 176 2,-0.2 4,-0.7 3,-0.2 -2,-0.2 0.798 112.6 44.1 -79.9 -31.6 -5.5 4.9 -10.6 68 68 A L H X S+ 0 0 0 -4,-1.2 4,-1.6 2,-0.2 -3,-0.2 0.854 116.9 46.1 -79.4 -38.2 -3.3 3.0 -8.1 69 69 A R H X S+ 0 0 102 -4,-2.1 4,-3.4 2,-0.2 5,-0.3 0.943 109.7 52.2 -68.5 -50.4 -1.5 1.1 -10.9 70 70 A A H X S+ 0 0 69 -4,-2.0 4,-0.8 1,-0.3 -1,-0.2 0.819 111.7 49.5 -55.0 -31.8 -0.9 4.2 -13.0 71 71 A W H < S+ 0 0 43 -4,-0.7 -1,-0.3 2,-0.2 4,-0.3 0.848 110.6 50.1 -75.0 -35.9 0.6 5.7 -9.8 72 72 A L H >< S+ 0 0 19 -4,-1.6 3,-3.3 1,-0.2 -2,-0.2 0.951 105.4 54.2 -66.0 -51.4 2.7 2.6 -9.3 73 73 A D H 3< S+ 0 0 117 -4,-3.4 -1,-0.2 1,-0.3 -2,-0.2 0.806 92.1 75.8 -52.1 -30.6 4.1 2.7 -12.8 74 74 A A T 3< S+ 0 0 78 -4,-0.8 -1,-0.3 -5,-0.3 -2,-0.2 0.769 106.3 35.4 -52.4 -26.0 5.0 6.3 -11.9 75 75 A A S < S- 0 0 17 -3,-3.3 0, 0.0 -4,-0.3 0, 0.0 -0.820 94.9 -98.7-126.4 165.8 7.8 4.5 -10.0 76 76 A P - 0 0 94 0, 0.0 2,-0.3 0, 0.0 -21,-0.1 -0.098 34.0-146.0 -75.0 178.1 9.9 1.4 -10.5 77 77 A H 0 0 172 -4,-0.0 -51,-0.0 -75,-0.0 -75,-0.0 -0.811 360.0 360.0-138.2 177.2 9.3 -2.0 -8.9 78 78 A A 0 0 139 -2,-0.3 -76,-0.0 -50,-0.2 0, 0.0 -0.365 360.0 360.0-165.9 360.0 11.2 -5.0 -7.6