==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 20-OCT-04 1XSW . COMPND 2 MOLECULE: KALIOTOXIN 1; . SOURCE 2 ORGANISM_SCIENTIFIC: ANDROCTONUS MAURETANICUS MAURETANICUS; . AUTHOR A.LANGE,S.BECKER,K.SEIDEL,K.GILLER,O.PONGS,M.BALDUS . 38 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2977.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 16 42.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 10.5 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 7.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 10.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 112 0, 0.0 2,-0.3 0, 0.0 35,-0.0 0.000 360.0 360.0 360.0 133.2 -5.2 11.9 6.2 2 2 A V - 0 0 80 33,-0.0 2,-0.3 2,-0.0 33,-0.1 -0.870 360.0-171.3-115.4 148.2 -5.6 9.7 3.1 3 3 A E - 0 0 130 -2,-0.3 2,-0.4 33,-0.1 31,-0.1 -0.961 9.6-150.5-136.7 153.5 -5.5 5.9 2.9 4 4 A I - 0 0 10 -2,-0.3 2,-0.6 31,-0.2 31,-0.2 -0.986 2.2-157.5-128.7 128.8 -5.4 3.3 0.1 5 5 A N + 0 0 115 -2,-0.4 2,-0.3 29,-0.1 29,-0.1 -0.904 27.2 158.0-107.6 116.7 -6.8 -0.2 0.2 6 6 A V - 0 0 25 -2,-0.6 27,-0.7 27,-0.4 2,-0.7 -0.990 45.3-111.4-137.6 145.9 -5.2 -2.5 -2.3 7 7 A K + 0 0 141 -2,-0.3 2,-0.3 25,-0.2 25,-0.2 -0.662 53.2 155.8 -79.7 114.6 -4.8 -6.3 -2.7 8 8 A a - 0 0 7 -2,-0.7 23,-0.5 21,-0.1 2,-0.4 -0.968 34.1-148.0-139.5 156.8 -1.2 -7.2 -2.1 9 9 A S S S+ 0 0 91 -2,-0.3 4,-0.2 1,-0.2 20,-0.1 -0.991 70.4 8.7-127.1 128.7 1.0 -10.1 -1.0 10 10 A G S > S- 0 0 46 -2,-0.4 3,-1.5 18,-0.2 4,-0.4 0.534 81.8-102.5 74.9 131.6 4.2 -9.7 0.9 11 11 A S G > S+ 0 0 52 1,-0.3 3,-2.4 2,-0.2 16,-1.0 0.915 120.3 57.4 -51.7 -51.1 5.3 -6.3 2.2 12 12 A P G 3 S+ 0 0 111 0, 0.0 -1,-0.3 0, 0.0 3,-0.3 0.679 105.2 54.0 -55.8 -19.4 7.9 -5.7 -0.7 13 13 A Q G < S+ 0 0 61 -3,-1.5 3,-0.2 -4,-0.2 -2,-0.2 0.473 88.8 76.1 -95.6 -3.9 5.0 -6.1 -3.1 14 14 A b S <> S+ 0 0 0 -3,-2.4 4,-1.5 -4,-0.4 -1,-0.2 0.681 78.4 76.4 -79.4 -17.5 2.8 -3.4 -1.6 15 15 A L T 4 S+ 0 0 72 -4,-0.5 4,-0.3 -3,-0.3 -1,-0.2 0.921 98.3 41.4 -57.8 -48.9 4.9 -0.7 -3.1 16 16 A K T >4 S+ 0 0 139 -3,-0.2 3,-1.6 -4,-0.2 -1,-0.2 0.945 115.1 47.8 -67.5 -51.1 3.4 -1.1 -6.6 17 17 A P T 34 S+ 0 0 26 0, 0.0 -1,-0.2 0, 0.0 -2,-0.2 0.729 98.6 71.3 -64.1 -21.6 -0.3 -1.6 -5.6 18 18 A c T >< + 0 0 0 -4,-1.5 2,-2.5 1,-0.1 3,-0.6 0.654 68.3 104.2 -69.5 -13.8 -0.1 1.4 -3.3 19 19 A K T < + 0 0 129 -3,-1.6 -1,-0.1 -4,-0.3 5,-0.1 -0.428 55.7 88.5 -70.3 76.9 0.0 3.6 -6.4 20 20 A D T 3 S+ 0 0 125 -2,-2.5 -1,-0.2 3,-0.1 -2,-0.1 0.513 88.1 29.8-133.9 -64.9 -3.6 4.8 -6.2 21 21 A A S < S- 0 0 55 -3,-0.6 -2,-0.1 3,-0.0 3,-0.1 0.321 111.6-104.3 -86.1 7.9 -4.1 7.9 -4.1 22 22 A G S S+ 0 0 75 -4,-0.3 -3,-0.1 1,-0.2 2,-0.1 0.676 79.9 134.7 78.1 17.1 -0.6 9.1 -5.0 23 23 A M - 0 0 16 -5,-0.5 2,-0.2 1,-0.1 -1,-0.2 -0.202 46.3-125.9 -88.4-177.1 0.7 8.2 -1.6 24 24 A R B +A 36 0A 165 12,-0.8 12,-2.4 -3,-0.1 -1,-0.1 -0.734 58.2 52.0-126.2 175.3 3.9 6.3 -0.7 25 25 A F - 0 0 95 -2,-0.2 -2,-0.1 10,-0.2 11,-0.0 0.263 51.5-150.9 77.0 153.5 5.1 3.3 1.3 26 26 A G + 0 0 0 9,-0.1 8,-0.7 7,-0.1 -15,-0.1 0.366 29.7 149.5-121.6-105.9 3.7 -0.2 1.0 27 27 A K - 0 0 103 -16,-1.0 7,-1.0 6,-0.1 2,-0.3 0.908 29.2-168.9 61.5 101.9 3.5 -3.0 3.6 28 28 A a B +B 33 0B 13 5,-0.2 2,-0.3 -21,-0.0 5,-0.2 -0.905 12.0 174.7-123.8 151.8 0.5 -5.3 3.0 29 29 A M + 0 0 151 3,-2.0 3,-0.2 -2,-0.3 -20,-0.1 -0.975 65.4 12.0-156.3 139.9 -1.2 -8.0 5.0 30 30 A N S S- 0 0 141 -2,-0.3 3,-0.1 1,-0.2 -21,-0.1 0.859 133.5 -55.2 61.4 35.5 -4.3 -10.1 4.6 31 31 A R S S+ 0 0 151 -23,-0.5 2,-0.4 1,-0.2 -1,-0.2 0.854 114.9 120.6 66.0 36.0 -4.5 -9.0 1.0 32 32 A K - 0 0 81 -24,-0.3 -3,-2.0 -3,-0.2 2,-0.3 -0.995 48.2-154.2-135.1 138.6 -4.5 -5.4 2.1 33 33 A b B -B 28 0B 5 -27,-0.7 -27,-0.4 -2,-0.4 2,-0.4 -0.863 6.0-158.1-112.6 145.7 -2.2 -2.5 1.2 34 34 A H - 0 0 100 -7,-1.0 2,-0.4 -8,-0.7 -29,-0.1 -0.969 1.1-158.9-124.6 138.8 -1.5 0.6 3.3 35 35 A c - 0 0 0 -2,-0.4 -10,-0.2 -31,-0.2 -31,-0.2 -0.955 11.1-143.0-119.4 133.8 -0.2 4.0 2.1 36 36 A T B -A 24 0A 68 -12,-2.4 -12,-0.8 -2,-0.4 -33,-0.1 -0.829 19.9-140.1 -98.1 108.4 1.5 6.6 4.4 37 37 A P 0 0 53 0, 0.0 -14,-0.1 0, 0.0 -15,-0.0 -0.337 360.0 360.0 -66.0 144.4 0.5 10.2 3.4 38 38 A K 0 0 233 -2,-0.0 -15,-0.1 -37,-0.0 -2,-0.0 0.793 360.0 360.0-110.7 360.0 3.3 12.8 3.5