==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIFREEZE PROTEIN 14-NOV-04 1Y03 . COMPND 2 MOLECULE: ANTIFREEZE PEPTIDE SS-3; . SOURCE 2 ORGANISM_SCIENTIFIC: MYOXOCEPHALUS SCORPIUS; . AUTHOR A.H.Y.KWAN,K.FAIRLEY,P.I.ANDERBERG,C.W.LIEW,M.M.HARDING, . 35 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3070.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 25 71.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 14.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 19 54.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 123 0, 0.0 2,-0.5 0, 0.0 3,-0.1 0.000 360.0 360.0 360.0 81.1 21.8 -11.1 3.2 2 2 A S + 0 0 94 1,-0.1 0, 0.0 5,-0.1 0, 0.0 -0.783 360.0 123.0-128.5 87.0 18.3 -11.5 1.7 3 3 A M + 0 0 150 -2,-0.5 -1,-0.1 5,-0.0 2,-0.0 0.122 49.4 113.3-124.7 16.5 17.3 -8.5 -0.4 4 4 A N S > S- 0 0 97 -3,-0.1 4,-1.1 1,-0.0 5,-0.1 -0.135 83.7 -92.4 -84.3-179.7 16.7 -10.5 -3.6 5 5 A A H >> S+ 0 0 78 1,-0.2 4,-1.0 2,-0.2 3,-0.7 0.931 123.8 47.4 -61.2 -51.1 13.5 -11.2 -5.5 6 6 A P H 34 S+ 0 0 106 0, 0.0 4,-0.3 0, 0.0 -1,-0.2 0.780 109.6 56.4 -64.9 -24.4 12.6 -14.5 -3.8 7 7 A A H >4 S+ 0 0 37 1,-0.2 3,-0.6 2,-0.2 -2,-0.2 0.800 105.3 50.9 -74.5 -28.2 13.3 -12.8 -0.4 8 8 A R H X< S+ 0 0 161 -4,-1.1 3,-1.3 -3,-0.7 -1,-0.2 0.685 93.8 73.9 -82.1 -19.6 10.7 -10.2 -1.3 9 9 A A G >< S+ 0 0 66 -4,-1.0 3,-1.0 1,-0.3 4,-0.3 0.686 85.6 65.6 -68.8 -18.1 8.1 -12.8 -2.1 10 10 A A G < S+ 0 0 86 -3,-0.6 3,-0.3 -4,-0.3 -1,-0.3 0.729 95.4 57.1 -75.3 -21.1 7.7 -13.5 1.6 11 11 A A G <> S+ 0 0 56 -3,-1.3 4,-2.1 -4,-0.2 5,-0.3 0.262 77.4 106.1 -93.0 11.2 6.3 -10.0 2.1 12 12 A K H <> S+ 0 0 126 -3,-1.0 4,-2.5 1,-0.2 5,-0.2 0.964 76.7 46.9 -54.0 -64.7 3.5 -10.7 -0.4 13 13 A T H > S+ 0 0 107 -3,-0.3 4,-2.5 -4,-0.3 -1,-0.2 0.797 110.2 56.5 -50.1 -34.3 0.6 -11.1 2.0 14 14 A A H > S+ 0 0 61 2,-0.2 4,-1.6 -4,-0.2 -1,-0.2 0.973 114.7 35.1 -64.6 -55.2 1.7 -8.0 3.8 15 15 A A H X S+ 0 0 62 -4,-2.1 4,-2.1 1,-0.2 -2,-0.2 0.745 115.9 60.1 -68.8 -23.5 1.6 -5.8 0.7 16 16 A D H X S+ 0 0 74 -4,-2.5 4,-2.0 -5,-0.3 -2,-0.2 0.916 103.7 47.6 -70.7 -44.9 -1.4 -7.8 -0.4 17 17 A A H X S+ 0 0 62 -4,-2.5 4,-2.6 1,-0.2 -2,-0.2 0.894 113.4 49.1 -62.4 -40.3 -3.5 -6.9 2.7 18 18 A L H X S+ 0 0 107 -4,-1.6 4,-3.4 2,-0.2 5,-0.3 0.896 106.4 56.3 -66.7 -41.4 -2.5 -3.3 2.2 19 19 A A H X S+ 0 0 59 -4,-2.1 4,-2.0 2,-0.2 -2,-0.2 0.912 112.5 41.8 -55.6 -45.7 -3.5 -3.4 -1.5 20 20 A A H X S+ 0 0 55 -4,-2.0 4,-2.8 2,-0.2 5,-0.3 0.927 115.9 49.2 -67.7 -45.7 -7.0 -4.6 -0.5 21 21 A A H X S+ 0 0 53 -4,-2.6 4,-2.3 1,-0.2 -2,-0.2 0.910 113.9 45.4 -61.1 -44.1 -7.3 -2.2 2.4 22 22 A K H X S+ 0 0 145 -4,-3.4 4,-2.1 2,-0.2 5,-0.2 0.889 114.3 49.5 -68.1 -40.1 -6.2 0.8 0.3 23 23 A K H X S+ 0 0 126 -4,-2.0 4,-2.7 -5,-0.3 -2,-0.2 0.971 114.3 42.9 -61.4 -56.2 -8.4 -0.2 -2.6 24 24 A T H X S+ 0 0 91 -4,-2.8 4,-3.0 2,-0.2 5,-0.3 0.861 111.4 55.4 -61.7 -39.8 -11.5 -0.6 -0.5 25 25 A A H X S+ 0 0 59 -4,-2.3 4,-2.0 -5,-0.3 -1,-0.2 0.957 115.5 37.6 -58.6 -52.4 -10.8 2.5 1.6 26 26 A A H X S+ 0 0 60 -4,-2.1 4,-2.8 2,-0.2 -2,-0.2 0.837 113.4 59.6 -67.3 -33.7 -10.7 4.7 -1.6 27 27 A D H X S+ 0 0 84 -4,-2.7 4,-1.5 -5,-0.2 -2,-0.2 0.941 109.9 40.9 -58.1 -50.1 -13.5 2.6 -3.0 28 28 A A H < S+ 0 0 65 -4,-3.0 -2,-0.2 1,-0.2 -1,-0.2 0.858 115.1 52.3 -66.7 -36.0 -15.8 3.5 -0.2 29 29 A A H >< S+ 0 0 64 -4,-2.0 3,-1.3 -5,-0.3 -2,-0.2 0.860 106.3 53.6 -69.3 -36.2 -14.5 7.1 -0.3 30 30 A A H 3< S+ 0 0 74 -4,-2.8 3,-0.5 1,-0.3 -1,-0.2 0.876 107.2 51.4 -64.4 -37.4 -15.2 7.3 -4.0 31 31 A A T 3< S+ 0 0 84 -4,-1.5 3,-0.3 1,-0.2 -1,-0.3 0.219 90.1 83.6 -85.1 13.2 -18.8 6.2 -3.3 32 32 A A < + 0 0 55 -3,-1.3 3,-0.4 1,-0.2 -1,-0.2 -0.072 60.5 96.3-102.4 31.1 -19.1 9.0 -0.7 33 33 A A S S+ 0 0 93 -3,-0.5 2,-0.6 1,-0.2 -1,-0.2 0.780 82.4 49.1 -89.4 -32.2 -19.9 11.6 -3.4 34 34 A A 0 0 105 -3,-0.3 -1,-0.2 1,-0.2 -3,-0.0 -0.527 360.0 360.0-103.3 62.0 -23.7 11.3 -2.8 35 35 A A 0 0 145 -2,-0.6 -1,-0.2 -3,-0.4 -2,-0.1 0.517 360.0 360.0-137.9 360.0 -23.5 11.6 1.0