==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIFREEZE PROTEIN 14-NOV-04 1Y04 . COMPND 2 MOLECULE: ANTIFREEZE PEPTIDE SS-3; . SOURCE 2 ORGANISM_SCIENTIFIC: MYOXOCEPHALUS SCORPIUS; . AUTHOR A.H.Y.KWAN,K.FAIRLEY,P.I.ANDERBERG,C.W.LIEW,M.M.HARDING, . 35 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3003.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 29 82.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 5.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 11.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 23 65.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 119 0, 0.0 4,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 63.0 17.9 11.5 -0.8 2 2 A S + 0 0 131 1,-0.1 2,-0.4 2,-0.1 0, 0.0 0.945 360.0 50.1 -60.1 -51.6 14.3 12.3 0.1 3 3 A M S S- 0 0 133 1,-0.0 2,-0.7 4,-0.0 -1,-0.1 -0.772 89.3-129.2 -91.3 131.3 13.1 8.8 -0.8 4 4 A N > - 0 0 102 -2,-0.4 4,-1.6 1,-0.2 -2,-0.1 -0.725 17.8-165.9 -83.7 116.1 15.1 5.9 0.7 5 5 A A H > S+ 0 0 72 -2,-0.7 4,-1.5 2,-0.2 5,-0.2 0.940 84.7 45.6 -69.6 -51.5 16.1 3.5 -2.1 6 6 A P H > S+ 0 0 97 0, 0.0 4,-2.0 0, 0.0 3,-0.2 0.931 115.6 47.7 -57.6 -46.1 17.2 0.5 0.1 7 7 A A H > S+ 0 0 46 1,-0.2 4,-3.1 2,-0.2 5,-0.3 0.852 104.3 62.0 -64.3 -35.7 14.1 0.7 2.3 8 8 A R H < S+ 0 0 154 -4,-1.6 4,-0.3 1,-0.2 -1,-0.2 0.905 111.7 36.3 -57.3 -45.1 11.8 1.0 -0.7 9 9 A A H < S+ 0 0 75 -4,-1.5 4,-0.4 -3,-0.2 -1,-0.2 0.822 119.9 49.3 -79.1 -32.6 12.8 -2.4 -2.0 10 10 A A H >< S+ 0 0 76 -4,-2.0 3,-0.7 -5,-0.2 4,-0.3 0.951 117.6 36.9 -72.7 -50.5 13.1 -4.0 1.5 11 11 A A T 3X S+ 0 0 56 -4,-3.1 4,-2.5 1,-0.2 3,-0.3 0.477 92.9 95.3 -82.5 -2.0 9.7 -2.8 2.9 12 12 A K H 3> S+ 0 0 111 -4,-0.3 4,-2.4 -5,-0.3 -1,-0.2 0.883 81.7 52.1 -56.0 -42.7 8.1 -3.3 -0.5 13 13 A T H <> S+ 0 0 104 -3,-0.7 4,-2.1 -4,-0.4 -1,-0.2 0.863 109.9 49.1 -64.6 -35.7 6.9 -6.8 0.5 14 14 A A H > S+ 0 0 59 -4,-0.3 4,-2.1 -3,-0.3 -2,-0.2 0.914 112.8 46.7 -68.7 -42.8 5.3 -5.4 3.6 15 15 A A H X S+ 0 0 61 -4,-2.5 4,-1.5 2,-0.2 -2,-0.2 0.843 110.1 55.8 -66.1 -33.9 3.6 -2.6 1.7 16 16 A D H X S+ 0 0 83 -4,-2.4 4,-0.6 -5,-0.2 -2,-0.2 0.937 109.3 44.4 -62.8 -49.1 2.5 -5.2 -0.9 17 17 A A H >X S+ 0 0 69 -4,-2.1 3,-0.8 1,-0.2 4,-0.7 0.872 114.0 49.9 -64.9 -38.4 0.8 -7.3 1.8 18 18 A L H 3X S+ 0 0 102 -4,-2.1 4,-2.9 1,-0.2 -1,-0.2 0.766 99.7 66.1 -72.5 -24.5 -0.8 -4.3 3.4 19 19 A A H 3X S+ 0 0 48 -4,-1.5 4,-1.5 1,-0.2 -1,-0.2 0.732 93.5 61.8 -68.0 -22.1 -2.0 -3.2 -0.1 20 20 A A H X S+ 0 0 63 -4,-2.3 4,-2.9 1,-0.2 3,-0.7 0.866 113.3 59.0 -72.3 -37.3 -10.8 1.7 -0.3 27 27 A D H 3X S+ 0 0 84 -4,-2.9 4,-3.3 1,-0.3 5,-0.4 0.886 96.8 60.7 -59.2 -41.6 -13.2 -0.8 -1.9 28 28 A A H 3< S+ 0 0 67 -4,-2.4 -1,-0.3 1,-0.2 4,-0.2 0.825 113.8 37.4 -56.4 -33.6 -15.7 -0.4 1.0 29 29 A A H X S+ 0 0 56 -4,-2.9 4,-3.2 1,-0.2 3,-1.2 0.921 113.4 47.0 -62.7 -47.8 -15.7 2.9 -3.8 31 31 A A H 3< S+ 0 0 49 -4,-3.3 -1,-0.2 1,-0.3 -3,-0.2 0.683 107.6 58.9 -70.6 -17.9 -18.3 0.1 -4.0 32 32 A A H 34 S+ 0 0 82 -5,-0.4 -1,-0.3 -3,-0.3 -2,-0.2 0.642 116.5 34.0 -82.0 -16.7 -20.6 2.0 -1.7 33 33 A A H << S+ 0 0 81 -3,-1.2 2,-1.8 -4,-0.7 -2,-0.2 0.843 115.2 52.1-100.3 -55.5 -20.5 4.8 -4.3 34 34 A A < 0 0 88 -4,-3.2 -1,-0.2 1,-0.2 -4,-0.0 -0.546 360.0 360.0 -86.6 74.0 -20.3 3.1 -7.6 35 35 A A 0 0 146 -2,-1.8 -1,-0.2 -3,-0.2 -4,-0.1 0.341 360.0 360.0-135.6 360.0 -23.2 0.7 -7.2