==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-OCT-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PROTEIN FIBRIL 21-DEC-10 2Y3J . COMPND 2 MOLECULE: AMYLOID BETA A4 PROTEIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR J.P.COLLETIER,A.LAGANOWSKY,M.R.SAWAYA,D.EISENBERG . 48 8 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3954.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 21 43.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 20 41.7 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 99 0, 0.0 2,-0.4 0, 0.0 15,-0.2 0.000 360.0 360.0 360.0 76.7 2.5 5.2 -1.3 2 2 A I E +a 16 0A 96 13,-2.6 15,-2.8 21,-0.1 2,-0.4 -0.880 360.0 167.4-139.6 107.8 2.2 3.6 -4.8 3 3 A I E +a 17 0A 42 -2,-0.4 2,-0.4 13,-0.2 15,-0.2 -0.933 4.3 178.4-111.5 143.5 2.1 4.7 -8.4 4 4 A G E +a 18 0A 48 13,-1.3 15,-1.5 -2,-0.4 2,-0.4 -0.883 14.7 172.6-135.6 105.1 2.4 2.6 -11.5 5 5 A L E a 19 0A 50 -2,-0.4 15,-0.2 13,-0.2 21,-0.0 -0.920 360.0 360.0-121.8 141.4 2.1 4.6 -14.8 6 6 A M 0 0 139 13,-2.6 21,-0.1 -2,-0.4 -2,-0.0 -0.923 360.0 360.0-125.2 360.0 2.6 3.4 -18.4 7 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 8 1 B A 0 0 111 0, 0.0 15,-1.5 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 66.6 -0.7 12.9 -1.3 9 2 B I E -b 23 0B 31 13,-0.2 2,-0.4 -7,-0.0 15,-0.2 -0.945 360.0-170.4-141.7 118.9 0.1 11.2 -4.6 10 3 B I E -b 24 0B 91 13,-3.5 15,-0.8 -2,-0.4 2,-0.5 -0.899 5.8-177.6-114.8 129.7 -0.2 12.6 -8.2 11 4 B G E +b 25 0B 16 -2,-0.4 2,-0.6 13,-0.2 15,-0.2 -0.901 6.2 172.6-128.0 106.4 0.1 10.7 -11.5 12 5 B L E b 26 0B 105 13,-2.1 15,-1.0 -2,-0.5 -7,-0.0 -0.925 360.0 360.0-116.5 112.8 -0.1 12.7 -14.7 13 6 B M 0 0 43 -2,-0.6 13,-0.1 13,-0.2 -7,-0.1 -0.854 360.0 360.0-123.8 360.0 0.6 10.8 -17.9 14 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 15 1 C A 0 0 90 0, 0.0 -13,-2.6 0, 0.0 2,-0.5 0.000 360.0 360.0 360.0 157.6 -2.4 4.6 -1.3 16 2 C I E +a 2 0A 138 -15,-0.2 2,-0.3 -13,-0.0 -13,-0.2 -0.936 360.0 166.0-128.8 119.4 -2.6 3.2 -4.8 17 3 C I E +a 3 0A 74 -15,-2.8 -13,-1.3 -2,-0.5 2,-0.3 -0.905 5.4 174.1-121.8 158.1 -2.9 4.7 -8.2 18 4 C G E -a 4 0A 54 -2,-0.3 2,-0.4 -15,-0.2 -13,-0.2 -0.924 11.2-176.8-160.0 135.3 -2.4 3.4 -11.8 19 5 C L E a 5 0A 55 -15,-1.5 -13,-2.6 -2,-0.3 -2,-0.0 -0.913 360.0 360.0-139.6 122.1 -2.8 4.4 -15.3 20 6 C M 0 0 123 -2,-0.4 -15,-0.1 -15,-0.2 -2,-0.0 -0.665 360.0 360.0 -88.0 360.0 -2.2 2.3 -18.4 21 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 22 1 D A 0 0 124 0, 0.0 2,-0.3 0, 0.0 -13,-0.2 0.000 360.0 360.0 360.0 170.7 4.3 12.7 -1.3 23 2 D I E +b 9 0B 54 -15,-1.5 -13,-3.5 -21,-0.0 2,-0.3 -0.798 360.0 172.1-159.4 108.5 4.5 11.4 -4.9 24 3 D I E -b 10 0B 122 -2,-0.3 2,-0.3 -15,-0.2 -13,-0.2 -0.770 6.9-176.9-107.2 163.9 4.3 12.8 -8.5 25 4 D G E +b 11 0B 17 -15,-0.8 -13,-2.1 -2,-0.3 2,-0.3 -0.893 4.8 179.9-156.9 123.6 4.9 11.1 -11.8 26 5 D L E b 12 0B 128 -2,-0.3 -13,-0.2 -15,-0.2 -21,-0.0 -0.939 360.0 360.0-135.8 161.0 4.9 12.3 -15.4 27 6 D M 0 0 128 -15,-1.0 -14,-0.1 -2,-0.3 -1,-0.0 -0.348 360.0 360.0-145.7 360.0 5.4 11.3 -19.1 28 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 29 1 E A 0 0 79 0, 0.0 2,-0.5 0, 0.0 15,-0.2 0.000 360.0 360.0 360.0 114.7 -2.7 11.3 -24.0 30 2 E I E -c 44 0C 108 13,-2.0 15,-2.6 7,-0.1 2,-0.4 -0.907 360.0-176.8-125.0 131.1 -3.0 12.3 -27.7 31 3 E I E +c 45 0C 50 -2,-0.5 2,-0.4 13,-0.2 15,-0.2 -0.957 5.7 177.8-117.1 138.0 -2.8 10.6 -31.1 32 4 E G E +c 46 0C 39 13,-2.1 15,-3.2 -2,-0.4 2,-0.4 -0.963 0.6 176.8-134.4 125.8 -3.0 12.3 -34.5 33 5 E L E c 47 0C 38 -2,-0.4 15,-0.2 13,-0.2 21,-0.0 -0.978 360.0 360.0-120.0 143.4 -2.7 10.7 -38.0 34 6 E M 0 0 160 13,-2.4 7,-0.1 -2,-0.4 21,-0.0 -0.929 360.0 360.0-144.3 360.0 -3.1 12.2 -41.5 35 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 36 1 F A 0 0 52 0, 0.0 15,-4.8 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 110.4 -0.5 4.0 -24.4 37 2 F I E -d 51 0D 31 13,-0.2 2,-0.4 -7,-0.1 15,-0.2 -0.948 360.0-177.4-130.8 136.9 -0.9 4.8 -28.0 38 3 F I E -d 52 0D 99 13,-1.5 15,-4.2 -2,-0.4 2,-0.4 -0.978 3.2-176.9-131.5 124.1 -0.4 3.4 -31.5 39 4 F G E -d 53 0D 15 -2,-0.4 2,-0.4 13,-0.2 15,-0.2 -0.960 3.6-171.6-106.6 136.3 -0.9 5.1 -35.0 40 5 F L E d 54 0D 91 13,-1.3 15,-4.3 -2,-0.4 -7,-0.1 -0.990 360.0 360.0-124.1 123.9 -0.5 3.2 -38.3 41 6 F M 0 0 114 -2,-0.4 13,-0.0 13,-0.2 7,-0.0 -0.764 360.0 360.0-126.9 360.0 -0.6 5.1 -41.6 42 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 43 1 G A 0 0 28 0, 0.0 -13,-2.0 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 129.3 2.2 11.1 -23.8 44 2 G I E -c 30 0C 124 -15,-0.2 2,-0.4 -7,-0.0 -13,-0.2 -0.928 360.0-175.5-148.6 123.0 1.9 12.1 -27.4 45 3 G I E -c 31 0C 52 -15,-2.6 -13,-2.1 -2,-0.4 2,-0.4 -0.908 6.3-178.4-118.4 136.8 2.1 10.8 -31.0 46 4 G G E +c 32 0C 63 -2,-0.4 2,-0.4 -15,-0.2 -13,-0.2 -0.991 1.1 179.0-130.5 130.7 1.8 12.5 -34.3 47 5 G L E c 33 0C 55 -15,-3.2 -13,-2.4 -2,-0.4 -7,-0.1 -0.984 360.0 360.0-134.9 142.7 2.0 11.2 -37.9 48 6 G M 0 0 204 -2,-0.4 -7,-0.0 -15,-0.2 -2,-0.0 -0.985 360.0 360.0-149.1 360.0 1.7 12.8 -41.3 49 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 50 1 H A 0 0 102 0, 0.0 2,-0.4 0, 0.0 -13,-0.2 0.000 360.0 360.0 360.0 135.4 -5.0 3.4 -23.7 51 2 H I E -d 37 0D 55 -15,-4.8 -13,-1.5 -21,-0.0 2,-0.4 -0.987 360.0-174.1-137.5 150.5 -5.4 4.4 -27.3 52 3 H I E -d 38 0D 126 -2,-0.4 2,-0.4 -15,-0.2 -13,-0.2 -0.991 2.6-180.0-135.4 123.4 -5.2 3.1 -30.9 53 4 H G E -d 39 0D 20 -15,-4.2 -13,-1.3 -2,-0.4 2,-0.4 -0.987 6.4-179.3-114.8 133.0 -5.4 4.8 -34.3 54 5 H L E d 40 0D 128 -2,-0.4 -13,-0.2 -15,-0.2 -15,-0.1 -0.981 360.0 360.0-126.2 141.2 -5.1 3.1 -37.6 55 6 H M 0 0 143 -15,-4.3 -21,-0.1 -2,-0.4 -2,-0.0 -0.957 360.0 360.0-142.1 360.0 -5.3 4.4 -41.2