==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-OCT-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PROTEIN FIBRIL 21-DEC-10 2Y3K . COMPND 2 MOLECULE: AMYLOID BETA A4 PROTEIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR J.P.COLLETIER,A.LAGANOWSKY,M.R.SAWAYA,D.EISENBERG . 64 8 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4940.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 31 48.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 26 40.6 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 7.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 2 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 154 0, 0.0 10,-1.8 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 129.1 4.7 1.7 12.7 2 2 A V E +a 11 0A 89 8,-0.2 2,-0.4 10,-0.0 10,-0.2 -0.932 360.0 175.9-134.9 105.9 4.6 1.6 8.9 3 3 A G E -a 12 0A 33 8,-1.6 10,-2.0 -2,-0.4 2,-0.4 -0.933 10.1-172.4-118.3 138.7 5.0 -1.8 7.2 4 4 A G E -a 13 0A 60 -2,-0.4 2,-0.5 8,-0.2 10,-0.2 -0.972 5.0-175.0-134.0 125.7 4.8 -2.9 3.5 5 5 A V E -a 14 0A 76 8,-3.5 10,-3.1 -2,-0.4 2,-0.5 -0.931 2.9-175.7-129.4 120.6 4.8 -6.5 2.1 6 6 A V E +a 15 0A 97 -2,-0.5 2,-0.6 8,-0.2 10,-0.2 -0.912 9.3 178.9-121.0 120.7 4.9 -7.9 -1.5 7 7 A I E a 16 0A 111 8,-3.2 10,-1.8 -2,-0.5 -2,-0.0 -0.964 360.0 360.0-106.5 122.0 4.7 -11.4 -2.7 8 8 A A 0 0 67 -2,-0.6 -1,-0.1 9,-0.2 8,-0.1 0.443 360.0 360.0-158.7 360.0 4.8 -11.4 -6.4 9 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 10 1 B M 0 0 140 0, 0.0 2,-0.3 0, 0.0 -8,-0.2 0.000 360.0 360.0 360.0 150.3 0.1 2.6 12.0 11 2 B V E -a 2 0A 11 -10,-1.8 -8,-1.6 11,-0.1 2,-0.5 -0.890 360.0-174.7-145.3 108.5 0.0 2.0 8.2 12 3 B G E +a 3 0A 52 -2,-0.3 2,-0.4 -10,-0.2 -8,-0.2 -0.922 8.9 173.8-123.4 128.6 -0.1 -1.5 6.8 13 4 B G E +a 4 0A 5 -10,-2.0 -8,-3.5 -2,-0.5 2,-0.4 -0.978 2.5 175.4-132.9 125.9 0.0 -2.9 3.3 14 5 B V E -a 5 0A 99 -2,-0.4 2,-0.5 -10,-0.2 -8,-0.2 -0.974 6.0-173.3-124.7 120.7 0.2 -6.5 2.0 15 6 B V E +a 6 0A 23 -10,-3.1 -8,-3.2 -2,-0.4 2,-0.5 -0.949 12.4 174.2-110.8 128.3 0.0 -7.6 -1.7 16 7 B I E a 7 0A 141 -2,-0.5 -8,-0.2 -10,-0.2 -10,-0.1 -0.953 360.0 360.0-117.1 110.3 -0.1 -11.2 -3.1 17 8 B A 0 0 80 -10,-1.8 -9,-0.2 -2,-0.5 39,-0.2 0.263 360.0 360.0-154.1 360.0 -0.6 -10.9 -6.8 18 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 19 1 C M 0 0 171 0, 0.0 10,-0.5 0, 0.0 2,-0.3 0.000 360.0 360.0 360.0 148.7 2.4 12.6 12.4 20 2 C V E +b 29 0B 130 8,-0.2 2,-0.4 2,-0.0 10,-0.2 -0.920 360.0 169.8-158.7 110.6 2.3 12.0 8.7 21 3 C G E -b 30 0B 23 8,-3.2 10,-2.3 -2,-0.3 2,-0.3 -0.989 11.2-178.3-144.3 140.2 2.6 8.6 6.9 22 4 C G E -b 31 0B 64 -2,-0.4 2,-0.4 8,-0.2 10,-0.2 -0.993 3.1-171.5-140.2 131.9 2.2 7.0 3.4 23 5 C V E -b 32 0B 19 8,-3.6 10,-3.0 -2,-0.3 2,-0.5 -0.968 2.4-170.6-126.0 128.4 2.5 3.4 2.0 24 6 C V E +b 33 0B 107 -2,-0.4 2,-0.6 8,-0.2 10,-0.2 -0.935 12.2 176.2-120.1 119.7 2.5 2.2 -1.6 25 7 C I E b 34 0B 12 8,-3.1 10,-1.9 -2,-0.5 -11,-0.1 -0.975 360.0 360.0-103.9 115.7 2.3 -1.4 -2.8 26 8 C A 0 0 44 -2,-0.6 21,-0.2 9,-0.2 -1,-0.1 0.392 360.0 360.0-160.7 360.0 2.1 -1.1 -6.6 27 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 28 1 D M 0 0 155 0, 0.0 2,-0.5 0, 0.0 -8,-0.2 0.000 360.0 360.0 360.0 121.8 -2.3 11.3 12.3 29 2 D V E -b 20 0B 103 -10,-0.5 -8,-3.2 2,-0.0 2,-0.4 -0.950 360.0-177.0-119.8 106.6 -2.5 11.6 8.5 30 3 D G E -b 21 0B 53 -2,-0.5 2,-0.4 -10,-0.2 -8,-0.2 -0.902 12.8-177.1-118.6 131.8 -2.3 8.1 7.0 31 4 D G E +b 22 0B 34 -10,-2.3 -8,-3.6 -2,-0.4 2,-0.4 -0.959 2.7 176.3-134.4 123.7 -2.2 6.9 3.4 32 5 D V E -b 23 0B 91 -2,-0.4 2,-0.4 -10,-0.2 -8,-0.2 -0.945 2.5-178.0-128.1 113.3 -2.3 3.3 2.0 33 6 D V E +b 24 0B 70 -10,-3.0 -8,-3.1 -2,-0.4 2,-0.4 -0.911 8.5 176.3-108.0 131.7 -2.4 2.1 -1.7 34 7 D I E b 25 0B 95 -2,-0.4 -8,-0.2 -10,-0.2 -10,-0.0 -0.979 360.0 360.0-120.0 122.2 -2.5 -1.5 -3.0 35 8 D A 0 0 71 -10,-1.9 -9,-0.2 -2,-0.4 -1,-0.1 0.297 360.0 360.0-156.4 360.0 -2.8 -1.6 -6.8 36 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 37 1 E M 0 0 112 0, 0.0 10,-2.0 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 122.5 -0.2 -1.0 -11.4 38 2 E V B -c 47 0C 74 8,-0.2 2,-0.3 -3,-0.1 10,-0.2 -0.996 360.0-174.3-128.1 131.4 0.2 -0.7 -15.2 39 3 E G + 0 0 31 8,-2.0 2,-0.3 -2,-0.4 20,-0.0 -0.939 11.1 175.2-134.0 152.5 0.1 2.8 -16.9 40 4 E G + 0 0 55 -2,-0.3 2,-0.4 8,-0.2 10,-0.2 -0.850 1.2 173.9-165.8 113.7 0.1 4.2 -20.4 41 5 E V E +d 50 0D 78 8,-1.7 10,-1.8 -2,-0.3 2,-0.3 -0.968 3.5 179.4-123.7 140.3 -0.3 7.7 -21.8 42 6 E V E -d 51 0D 86 -2,-0.4 2,-0.4 8,-0.2 10,-0.2 -0.997 8.1-175.5-142.0 140.5 0.1 9.0 -25.3 43 7 E I E d 52 0D 112 8,-1.7 10,-2.8 -2,-0.3 -2,-0.0 -0.995 360.0 360.0-133.4 136.1 -0.3 12.4 -26.9 44 8 E A 0 0 128 -2,-0.4 -1,-0.1 9,-0.3 8,-0.1 0.509 360.0 360.0-162.6 360.0 0.0 12.8 -30.6 45 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 46 1 F M 0 0 148 0, 0.0 2,-0.4 0, 0.0 -8,-0.2 0.000 360.0 360.0 360.0 120.3 4.9 -0.6 -11.1 47 2 F V B +c 38 0C 32 -10,-2.0 -8,-2.0 -21,-0.2 2,-0.3 -0.987 360.0 145.0-131.1 132.3 5.1 -0.6 -14.9 48 3 F G - 0 0 41 -2,-0.4 2,-0.2 -10,-0.2 -8,-0.2 -0.825 20.2-174.7-142.7-176.5 4.4 2.5 -16.9 49 4 F G - 0 0 17 -2,-0.3 -8,-1.7 19,-0.1 2,-0.3 -0.802 6.3-157.1 179.6 151.7 5.2 4.4 -19.9 50 5 F V E -d 41 0D 91 -2,-0.2 2,-0.4 -10,-0.2 -8,-0.2 -0.964 3.1-169.3-133.3 150.8 4.5 7.7 -21.8 51 6 F V E -d 42 0D 20 -10,-1.8 -8,-1.7 -2,-0.3 2,-0.5 -0.997 17.0-173.0-141.3 137.7 4.7 9.1 -25.2 52 7 F I E d 43 0D 151 -2,-0.4 -8,-0.2 -10,-0.2 -10,-0.1 -0.889 360.0 360.0-117.1 89.1 4.4 12.6 -26.7 53 8 F A 0 0 95 -10,-2.8 -9,-0.3 -2,-0.5 -1,-0.1 0.831 360.0 360.0-111.9 360.0 4.5 11.4 -30.3 54 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 55 1 G M 0 0 57 0, 0.0 10,-2.0 0, 0.0 2,-0.5 0.000 360.0 360.0 360.0 112.1 2.1 -10.4 -11.4 56 2 G V B -e 65 0E 128 8,-0.2 2,-0.3 -39,-0.2 10,-0.2 -0.970 360.0-171.8-113.2 130.1 2.6 -10.6 -15.1 57 3 G G - 0 0 20 8,-2.1 2,-0.2 -2,-0.5 -19,-0.0 -0.836 15.6-179.0-125.6 165.2 2.4 -7.2 -16.8 58 4 G G + 0 0 66 -2,-0.3 2,-0.4 8,-0.1 10,-0.2 -0.754 6.5 171.5-170.0 110.0 2.3 -5.9 -20.4 59 5 G V E +f 68 0F 19 8,-1.8 10,-1.7 -2,-0.2 2,-0.4 -0.983 1.9 173.9-127.6 134.4 2.1 -2.3 -21.7 60 6 G V E -f 69 0F 92 -2,-0.4 2,-0.5 8,-0.2 10,-0.2 -0.997 21.6-170.2-145.3 144.0 2.4 -0.8 -25.2 61 7 G I E f 70 0F 12 8,-1.8 10,-2.0 -2,-0.4 -11,-0.0 -0.919 360.0 360.0-125.1 91.4 1.9 2.6 -26.8 62 8 G A 0 0 133 -2,-0.5 -1,-0.1 9,-0.2 8,-0.1 0.717 360.0 360.0-124.1 360.0 2.2 1.6 -30.4 63 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 64 1 H M 0 0 148 0, 0.0 2,-0.3 0, 0.0 -8,-0.2 0.000 360.0 360.0 360.0 135.2 7.3 -11.0 -11.3 65 2 H V B +e 56 0E 99 -10,-2.0 -8,-2.1 2,-0.0 2,-0.3 -0.957 360.0 153.9-142.2 132.7 7.5 -10.4 -15.0 66 3 H G + 0 0 49 -2,-0.3 2,-0.3 -10,-0.2 -8,-0.1 -0.921 13.0 177.9-142.6 173.0 6.9 -7.2 -16.9 67 4 H G - 0 0 38 -2,-0.3 -8,-1.8 2,-0.0 2,-0.3 -0.873 8.2-159.8-173.1 147.5 7.7 -5.3 -20.0 68 5 H V E -f 59 0F 73 -2,-0.3 2,-0.3 -10,-0.2 -8,-0.2 -0.926 2.8-167.7-126.2 156.4 6.9 -2.1 -21.8 69 6 H V E -f 60 0F 67 -10,-1.7 -8,-1.8 -2,-0.3 2,-0.4 -0.987 8.0-178.7-140.5 135.1 7.1 -0.8 -25.3 70 7 H I E f 61 0F 80 -2,-0.3 -8,-0.2 -10,-0.2 -2,-0.0 -0.996 360.0 360.0-125.4 129.7 6.9 2.7 -26.8 71 8 H A 0 0 108 -10,-2.0 -9,-0.2 -2,-0.4 -1,-0.1 0.566 360.0 360.0-145.1 360.0 7.2 2.7 -30.5