==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DNA BINDING PROTEIN 07-DEC-04 1Y6U . COMPND 2 MOLECULE: EXCISIONASE FROM TRANSPOSON TN916; . SOURCE 2 ORGANISM_SCIENTIFIC: ENTEROCOCCUS FAECALIS; . AUTHOR M.ABBANI,M.IWAHARA,R.T.CLUBB . 59 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4662.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 41 69.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 9 15.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 10.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 13.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 17 28.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 6 A I 0 0 142 0, 0.0 5,-0.2 0, 0.0 4,-0.1 0.000 360.0 360.0 360.0 140.7 0.8 14.4 -1.7 2 7 A P >> - 0 0 73 0, 0.0 3,-3.2 0, 0.0 4,-1.0 -0.270 360.0-127.2 -51.6 114.9 4.6 13.9 -2.1 3 8 A I T 34 S+ 0 0 13 1,-0.3 3,-0.3 2,-0.2 5,-0.0 0.806 109.7 60.7 -34.3 -42.7 5.0 10.1 -1.4 4 9 A W T 34 S+ 0 0 200 1,-0.2 -1,-0.3 3,-0.0 3,-0.0 0.343 108.4 46.5 -73.8 12.7 7.8 11.0 1.2 5 10 A E T <4 S+ 0 0 143 -3,-3.2 -1,-0.2 -4,-0.1 -2,-0.2 0.591 94.5 80.9-124.8 -25.7 5.0 13.0 3.1 6 11 A R S < S- 0 0 41 -4,-1.0 3,-0.1 -3,-0.3 0, 0.0 -0.284 70.6-137.0 -78.6 170.9 2.0 10.6 3.2 7 12 A Y S S+ 0 0 135 1,-0.1 42,-1.3 42,-0.0 43,-0.5 0.578 88.2 37.4-102.4 -14.5 1.7 7.8 5.7 8 13 A T E S-A 48 0A 2 40,-0.2 2,-0.4 41,-0.1 40,-0.3 -0.952 77.4-131.5-135.4 154.2 0.4 5.2 3.2 9 14 A L E -A 47 0A 2 38,-3.8 38,-5.7 -2,-0.3 -2,-0.0 -0.842 17.1-130.1-109.7 146.2 1.2 4.6 -0.5 10 15 A T E > -A 46 0A 22 -2,-0.4 4,-3.4 36,-0.3 5,-0.3 -0.171 38.3 -93.5 -80.1-178.8 -1.2 4.2 -3.4 11 16 A I H > S+ 0 0 34 34,-0.5 4,-3.4 2,-0.2 5,-0.2 0.912 130.0 45.8 -64.8 -38.2 -1.1 1.3 -5.9 12 17 A E H > S+ 0 0 104 2,-0.2 4,-2.2 1,-0.2 5,-0.3 0.960 117.4 41.7 -70.4 -48.0 1.0 3.5 -8.2 13 18 A E H >>S+ 0 0 31 2,-0.2 4,-2.8 1,-0.2 5,-0.6 0.919 118.7 48.8 -65.1 -37.7 3.3 4.7 -5.4 14 19 A A H X5S+ 0 0 0 -4,-3.4 4,-1.7 3,-0.2 -2,-0.2 0.971 107.8 51.8 -66.5 -52.0 3.3 1.1 -4.1 15 20 A S H <5S+ 0 0 33 -4,-3.4 5,-0.2 -5,-0.3 -1,-0.2 0.933 121.6 35.1 -52.2 -42.7 4.1 -0.4 -7.4 16 21 A K H ><5S+ 0 0 97 -4,-2.2 3,-0.7 -5,-0.2 -2,-0.2 0.988 131.1 29.8 -72.8 -68.3 7.0 2.0 -7.7 17 22 A Y H 3<5S+ 0 0 120 -4,-2.8 2,-1.3 1,-0.3 -3,-0.2 0.968 130.4 39.7 -55.4 -57.1 8.2 2.2 -4.1 18 23 A F T 3<> - 0 0 30 -2,-0.3 3,-2.2 1,-0.2 4,-1.3 -0.247 39.4-140.1 -49.9 114.2 3.0 -7.1 -8.9 22 27 A E H 3> S+ 0 0 107 1,-0.3 4,-1.8 2,-0.2 5,-0.2 0.843 101.3 63.1 -46.5 -35.0 0.3 -4.3 -9.1 23 28 A N H 3> S+ 0 0 110 1,-0.2 4,-1.8 2,-0.2 -1,-0.3 0.830 99.2 53.0 -64.4 -30.2 -2.2 -7.2 -9.4 24 29 A K H <> S+ 0 0 120 -3,-2.2 4,-3.7 2,-0.2 5,-0.3 0.973 105.9 51.2 -71.2 -51.4 -1.3 -8.6 -5.9 25 30 A L H X S+ 0 0 1 -4,-1.3 4,-1.9 1,-0.3 5,-0.3 0.924 114.9 44.4 -50.7 -45.0 -1.8 -5.2 -4.1 26 31 A R H X S+ 0 0 166 -4,-1.8 4,-1.4 1,-0.2 -1,-0.3 0.869 116.0 47.0 -70.2 -34.1 -5.2 -5.0 -5.7 27 32 A R H X S+ 0 0 167 -4,-1.8 4,-1.0 -5,-0.2 -2,-0.2 0.864 111.0 52.2 -76.7 -33.3 -6.0 -8.6 -5.0 28 33 A L H X S+ 0 0 66 -4,-3.7 4,-4.4 2,-0.2 3,-0.5 0.995 114.6 39.7 -65.8 -60.3 -4.8 -8.4 -1.4 29 34 A A H < S+ 0 0 0 -4,-1.9 6,-0.2 1,-0.3 -2,-0.2 0.981 116.0 49.6 -51.7 -65.7 -6.9 -5.3 -0.4 30 35 A E H < S+ 0 0 101 -4,-1.4 3,-0.4 -5,-0.3 -1,-0.3 0.804 119.4 42.7 -45.7 -27.2 -10.0 -6.5 -2.4 31 36 A E H < S+ 0 0 152 -4,-1.0 2,-0.7 -3,-0.5 -2,-0.2 0.921 123.6 32.9 -86.8 -50.8 -9.5 -9.8 -0.5 32 37 A N >< + 0 0 41 -4,-4.4 3,-3.8 1,-0.2 6,-0.2 -0.437 67.1 165.2-103.1 60.2 -8.7 -8.5 3.0 33 38 A K T 3 S+ 0 0 98 -2,-0.7 -1,-0.2 -3,-0.4 7,-0.1 0.811 82.6 51.5 -45.7 -27.6 -10.9 -5.4 3.0 34 39 A N T 3 S+ 0 0 158 -3,-0.2 -1,-0.3 -5,-0.1 -5,-0.1 0.125 82.3 147.8 -97.4 22.0 -10.3 -5.4 6.7 35 40 A A < - 0 0 15 -3,-3.8 3,-0.2 -6,-0.2 -6,-0.0 -0.216 54.8-131.6 -55.2 145.7 -6.5 -5.6 6.3 36 41 A N S S+ 0 0 121 1,-0.2 -1,-0.2 3,-0.0 15,-0.1 0.500 106.8 42.0 -78.6 -1.0 -4.6 -3.8 9.1 37 42 A W S S+ 0 0 53 14,-0.1 11,-0.7 11,-0.1 2,-0.2 0.522 95.4 87.0-120.4 -12.7 -2.5 -2.1 6.3 38 43 A L E -B 47 0A 16 -6,-0.2 2,-0.4 9,-0.2 9,-0.2 -0.612 52.5-169.5 -91.5 152.2 -5.1 -1.1 3.6 39 44 A I E -B 46 0A 58 7,-1.3 7,-1.3 -2,-0.2 2,-0.9 -0.929 12.5-151.4-142.8 116.4 -7.0 2.2 3.8 40 45 A M E -B 45 0A 82 -2,-0.4 2,-1.5 5,-0.2 5,-0.2 -0.748 8.7-165.4 -91.2 105.4 -10.0 3.0 1.5 41 46 A N E > S-B 44 0A 48 3,-2.7 2,-3.0 -2,-0.9 3,-1.4 -0.646 71.8 -57.0 -89.6 84.9 -10.1 6.8 1.0 42 47 A G T 3 S- 0 0 83 -2,-1.5 -1,-0.1 1,-0.3 -2,-0.1 -0.306 123.8 -24.6 76.4 -62.6 -13.6 7.1 -0.4 43 48 A N T 3 S+ 0 0 131 -2,-3.0 2,-0.4 1,-0.2 -1,-0.3 0.410 116.5 94.1-151.8 -29.1 -12.7 4.7 -3.2 44 49 A R E < - B 0 41A 166 -3,-1.4 -3,-2.7 -4,-0.1 2,-0.2 -0.612 66.6-140.2 -78.1 126.9 -8.9 4.8 -3.8 45 50 A I E - B 0 40A 25 -2,-0.4 -34,-0.5 -5,-0.2 2,-0.4 -0.605 17.7-161.6 -84.5 146.6 -7.1 2.1 -1.8 46 51 A Q E -AB 10 39A 2 -7,-1.3 -7,-1.3 -2,-0.2 2,-0.3 -0.975 11.5-133.0-132.0 144.5 -3.8 3.0 -0.1 47 52 A I E -AB 9 38A 0 -38,-5.7 -38,-3.8 -2,-0.4 2,-0.2 -0.718 22.3-123.0 -94.1 143.8 -0.9 0.7 1.2 48 53 A K E -A 8 0A 60 -11,-0.7 5,-0.2 -2,-0.3 -40,-0.2 -0.574 16.8-164.8 -83.1 147.5 0.6 1.3 4.6 49 54 A R S > S+ 0 0 90 -42,-1.3 4,-2.3 -2,-0.2 5,-0.5 0.811 80.0 56.6-100.6 -41.0 4.4 1.9 4.7 50 55 A K H > S+ 0 0 107 -43,-0.5 4,-1.1 1,-0.2 -42,-0.1 0.990 118.0 30.7 -55.9 -67.0 5.2 1.3 8.4 51 56 A Q H > S+ 0 0 87 2,-0.2 4,-0.6 1,-0.1 -1,-0.2 0.864 131.6 39.3 -62.9 -33.8 3.8 -2.2 8.7 52 57 A F H >4 S+ 0 0 22 2,-0.2 3,-2.3 1,-0.2 -3,-0.2 0.968 105.9 59.6 -81.2 -60.6 4.7 -3.0 5.1 53 58 A E H >< S+ 0 0 73 -4,-2.3 3,-1.0 1,-0.3 4,-0.4 0.798 102.6 59.3 -39.9 -30.2 8.1 -1.3 4.6 54 59 A K H 3< S+ 0 0 174 -4,-1.1 -1,-0.3 -5,-0.5 3,-0.2 0.896 106.9 44.2 -70.5 -36.8 9.3 -3.6 7.4 55 60 A I T << S+ 0 0 77 -3,-2.3 4,-0.4 -4,-0.6 -1,-0.2 0.026 88.5 96.3 -95.9 30.7 8.4 -6.7 5.4 56 61 A I S X S+ 0 0 36 -3,-1.0 3,-1.7 2,-0.2 -1,-0.1 0.962 87.7 38.2 -83.2 -59.1 9.8 -5.5 2.0 57 62 A D T 3 S+ 0 0 155 -4,-0.4 -1,-0.2 1,-0.3 -2,-0.1 0.567 110.1 70.6 -67.0 -1.7 13.3 -7.1 2.0 58 63 A T T 3 0 0 102 -4,-0.1 -1,-0.3 1,-0.1 -2,-0.2 0.745 360.0 360.0 -84.9 -27.0 11.5 -10.0 3.7 59 64 A L < 0 0 125 -3,-1.7 -2,-0.2 -4,-0.4 -3,-0.1 0.983 360.0 360.0 -76.1 360.0 9.7 -11.0 0.5