==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 24-DEC-04 1YDL . COMPND 2 MOLECULE: GENERAL TRANSCRIPTION FACTOR IIH, POLYPEPTIDE 5; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR F.FOROUHAR,W.EDSTROM,R.XIAO,T.B.ACTON,G.T.MONTELIONE,L.TONG, . 71 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5856.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 42 59.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 14.1 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 7.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 20 28.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 147 0, 0.0 3,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 147.2 34.0 33.3 20.9 2 2 A H + 0 0 191 1,-0.3 2,-0.5 0, 0.0 0, 0.0 0.820 360.0 37.3-106.4 -60.5 32.3 36.7 20.5 3 3 A G + 0 0 72 2,-0.0 -1,-0.3 0, 0.0 2,-0.3 -0.842 67.2 161.0-100.5 131.1 28.6 36.2 20.7 4 4 A T - 0 0 106 -2,-0.5 2,-0.3 -3,-0.1 0, 0.0 -0.994 11.6-179.7-147.8 142.1 27.1 33.6 23.1 5 5 A R - 0 0 158 -2,-0.3 2,-0.3 2,-0.0 -2,-0.0 -0.976 21.7-136.7-147.6 129.2 23.6 33.1 24.5 6 6 A K + 0 0 180 -2,-0.3 41,-0.4 2,-0.0 2,-0.3 -0.646 53.2 106.2 -82.2 136.1 22.3 30.4 26.9 7 7 A G - 0 0 33 -2,-0.3 2,-0.4 39,-0.2 39,-0.2 -0.904 63.8 -63.6-175.3-153.5 18.9 29.1 26.0 8 8 A X E -A 45 0A 72 37,-3.3 37,-3.7 -2,-0.3 2,-0.5 -0.982 28.4-151.7-131.3 126.8 16.9 26.2 24.6 9 9 A L E -A 44 0A 101 -2,-0.4 2,-0.4 35,-0.3 35,-0.2 -0.814 18.3-160.2 -92.8 131.8 17.0 24.8 21.1 10 10 A I E -A 43 0A 35 33,-2.6 33,-1.7 -2,-0.5 2,-0.4 -0.925 10.4-166.0-117.7 141.3 13.8 23.2 19.9 11 11 A E E +A 42 0A 152 -2,-0.4 2,-0.3 31,-0.2 31,-0.2 -0.997 29.6 139.5-124.6 122.0 13.3 20.7 17.1 12 12 A C - 0 0 26 29,-1.9 5,-0.1 -2,-0.4 -2,-0.0 -0.987 52.8 -70.5-159.3 162.0 9.7 20.2 15.9 13 13 A D > - 0 0 89 -2,-0.3 4,-2.1 1,-0.1 5,-0.2 0.046 52.6-102.4 -51.5 162.6 7.6 19.6 12.8 14 14 A P H > S+ 0 0 76 0, 0.0 4,-1.5 0, 0.0 -1,-0.1 0.792 119.3 55.1 -60.5 -27.2 7.1 22.5 10.4 15 15 A A H > S+ 0 0 43 2,-0.2 4,-1.8 1,-0.2 3,-0.3 0.987 108.8 42.2 -70.3 -60.8 3.6 23.1 11.8 16 16 A X H > S+ 0 0 94 1,-0.2 4,-2.1 2,-0.2 5,-0.2 0.902 112.8 57.0 -52.4 -43.3 4.4 23.6 15.4 17 17 A K H X S+ 0 0 9 -4,-2.1 4,-2.0 1,-0.2 -1,-0.2 0.898 106.4 47.4 -57.0 -44.3 7.5 25.7 14.4 18 18 A Q H X S+ 0 0 99 -4,-1.5 4,-2.0 -3,-0.3 -1,-0.2 0.839 109.4 56.0 -66.9 -30.2 5.3 28.1 12.5 19 19 A F H X S+ 0 0 122 -4,-1.8 4,-2.5 2,-0.2 -2,-0.2 0.879 105.4 50.3 -68.9 -38.7 3.0 28.2 15.5 20 20 A L H X S+ 0 0 22 -4,-2.1 4,-2.8 2,-0.2 -2,-0.2 0.935 110.2 50.4 -64.2 -45.0 5.8 29.3 17.8 21 21 A L H X S+ 0 0 25 -4,-2.0 4,-2.6 1,-0.2 -2,-0.2 0.882 111.7 48.7 -59.3 -38.8 6.7 32.0 15.3 22 22 A Y H X S+ 0 0 161 -4,-2.0 4,-1.9 2,-0.2 -1,-0.2 0.896 111.4 48.8 -68.6 -39.5 3.1 33.1 15.3 23 23 A L H <>S+ 0 0 54 -4,-2.5 5,-1.8 2,-0.2 6,-0.5 0.889 114.3 46.5 -65.9 -40.0 3.0 33.1 19.1 24 24 A D H ><5S+ 0 0 21 -4,-2.8 3,-1.0 2,-0.2 -2,-0.2 0.932 112.8 47.5 -68.3 -48.4 6.2 35.1 19.3 25 25 A E H 3<5S+ 0 0 141 -4,-2.6 -2,-0.2 1,-0.2 -1,-0.2 0.863 116.8 43.6 -63.1 -36.6 5.2 37.7 16.7 26 26 A S T 3<5S- 0 0 58 -4,-1.9 -1,-0.2 -5,-0.2 -2,-0.2 0.429 102.1-131.1 -89.3 0.2 1.8 38.3 18.2 27 27 A N T X 5 + 0 0 67 -3,-1.0 3,-2.1 -4,-0.3 -3,-0.2 0.849 47.5 160.3 51.5 36.5 3.1 38.3 21.8 28 28 A A T 3 - 0 0 25 -13,-2.0 3,-1.1 -39,-0.2 -39,-0.2 -0.274 39.9-122.2 -62.4 147.3 14.7 31.6 26.0 47 47 A A T 3 S+ 0 0 62 -41,-0.4 3,-0.5 1,-0.3 2,-0.2 0.854 108.6 55.1 -60.4 -36.0 15.6 29.1 28.8 48 48 A E T 3> + 0 0 99 1,-0.2 4,-2.0 2,-0.1 -1,-0.3 -0.111 65.7 125.2 -93.0 39.6 12.5 30.1 30.8 49 49 A L H <> S+ 0 0 20 -3,-1.1 4,-2.5 -2,-0.2 -1,-0.2 0.891 72.9 53.6 -62.4 -40.3 9.9 29.5 28.1 50 50 A V H > S+ 0 0 99 -3,-0.5 4,-3.1 1,-0.2 5,-0.2 0.949 107.9 49.2 -61.4 -48.2 7.9 27.2 30.4 51 51 A N H > S+ 0 0 93 1,-0.2 4,-2.2 2,-0.2 -1,-0.2 0.897 110.8 51.9 -55.9 -43.4 7.7 29.8 33.2 52 52 A V H X S+ 0 0 13 -4,-2.0 4,-2.3 1,-0.2 -1,-0.2 0.942 113.0 43.6 -59.6 -47.8 6.5 32.3 30.6 53 53 A L H X S+ 0 0 85 -4,-2.5 4,-2.3 1,-0.2 -2,-0.2 0.874 112.9 52.2 -66.0 -37.0 3.8 30.0 29.4 54 54 A Q H X S+ 0 0 147 -4,-3.1 4,-0.8 1,-0.2 -1,-0.2 0.830 111.7 47.8 -67.8 -31.1 2.9 29.0 33.0 55 55 A E H X S+ 0 0 124 -4,-2.2 4,-1.0 -5,-0.2 -2,-0.2 0.863 110.8 50.3 -75.9 -39.6 2.6 32.7 33.8 56 56 A R H X S+ 0 0 76 -4,-2.3 4,-0.8 1,-0.2 3,-0.4 0.914 106.9 53.4 -65.0 -45.8 0.5 33.4 30.7 57 57 A V H < S+ 0 0 72 -4,-2.3 3,-0.5 1,-0.2 4,-0.5 0.808 100.5 63.6 -61.1 -30.4 -2.0 30.6 31.4 58 58 A G H >< S+ 0 0 41 -4,-0.8 3,-1.6 1,-0.3 -1,-0.2 0.916 98.6 52.3 -60.7 -44.7 -2.6 32.0 34.9 59 59 A E H 3< S+ 0 0 119 -4,-1.0 -1,-0.3 -3,-0.4 -2,-0.2 0.747 101.5 64.3 -63.8 -22.4 -4.0 35.2 33.5 60 60 A L T 3< S+ 0 0 115 -4,-0.8 -1,-0.3 -3,-0.5 -2,-0.2 0.639 82.1 103.4 -76.3 -14.0 -6.4 33.0 31.5 61 61 A X S < S- 0 0 129 -3,-1.6 2,-0.2 -4,-0.5 -3,-0.0 -0.104 88.7 -77.8 -62.8 168.3 -8.0 31.7 34.6 62 62 A D - 0 0 142 1,-0.1 -1,-0.1 0, 0.0 -2,-0.1 -0.514 48.7-114.5 -73.1 133.6 -11.4 32.9 35.7 63 63 A Q + 0 0 149 -2,-0.2 2,-0.2 -3,-0.1 -1,-0.1 -0.311 40.1 175.7 -64.8 146.7 -11.5 36.3 37.5 64 64 A N > - 0 0 91 -2,-0.0 3,-1.7 0, 0.0 4,-0.3 -0.832 48.5 -78.4-142.0 180.0 -12.6 36.3 41.1 65 65 A A T 3 S+ 0 0 97 1,-0.3 3,-0.3 -2,-0.2 4,-0.3 0.727 128.5 45.8 -54.1 -27.6 -13.0 38.8 44.0 66 66 A F T 3>>S+ 0 0 128 1,-0.2 4,-2.0 2,-0.1 5,-0.6 0.441 79.0 106.4 -98.2 -2.5 -9.2 38.8 44.7 67 67 A S T <45S+ 0 0 10 -3,-1.7 4,-0.4 1,-0.2 -1,-0.2 0.767 90.4 31.6 -47.8 -35.3 -8.1 39.1 41.1 68 68 A L T 45S+ 0 0 144 -3,-0.3 -1,-0.2 -4,-0.3 -2,-0.1 0.768 117.1 52.0 -97.8 -30.4 -7.0 42.8 41.5 69 69 A T T 45S+ 0 0 116 -4,-0.3 -2,-0.2 1,-0.2 -1,-0.1 0.675 123.7 30.1 -80.5 -15.6 -5.9 42.8 45.2 70 70 A Q T <5 0 0 146 -4,-2.0 -3,-0.2 1,-0.1 -2,-0.2 0.654 360.0 360.0-111.3 -25.0 -3.5 39.9 44.7 71 71 A K < 0 0 175 -5,-0.6 -1,-0.1 -4,-0.4 -2,-0.1 -0.538 360.0 360.0-123.3 360.0 -2.6 40.4 41.0