==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER METAL TRANSPORT 04-JAN-05 1YG0 . COMPND 2 MOLECULE: COP ASSOCIATED PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: HELICOBACTER PYLORI; . AUTHOR B.J.LEE,S.J.PARK . 66 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4773.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 44 66.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 13 19.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 4.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 9.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 18 27.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 3 4.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 146 0, 0.0 44,-0.7 0, 0.0 2,-0.3 0.000 360.0 360.0 360.0 69.9 12.8 6.0 2.7 2 2 A K E -A 44 0A 160 42,-0.2 2,-0.3 28,-0.1 42,-0.3 -0.964 360.0-152.4-140.0 156.0 9.7 4.5 4.2 3 3 A A E -A 43 0A 3 40,-2.7 40,-1.3 -2,-0.3 2,-0.4 -0.946 2.5-164.6-130.4 151.2 6.0 5.1 4.3 4 4 A T E +A 42 0A 106 -2,-0.3 38,-0.3 38,-0.2 2,-0.2 -0.906 25.2 143.6-140.6 110.1 3.2 4.4 6.8 5 5 A F E -A 41 0A 28 36,-3.9 36,-3.5 -2,-0.4 2,-0.3 -0.596 34.6-129.0-128.4-169.8 -0.5 4.6 5.9 6 6 A Q - 0 0 92 34,-0.3 60,-0.7 -2,-0.2 34,-0.2 -0.944 3.6-146.9-153.3 128.2 -3.7 2.8 6.7 7 7 A V > - 0 0 0 -2,-0.3 3,-0.9 58,-0.2 58,-0.2 -0.798 8.7-170.0 -96.7 97.9 -6.4 1.2 4.5 8 8 A P T 3 S+ 0 0 67 0, 0.0 -1,-0.2 0, 0.0 57,-0.1 0.702 84.9 66.3 -59.5 -18.2 -9.7 1.7 6.4 9 9 A S T 3 S+ 0 0 81 55,-0.6 6,-0.1 -3,-0.1 56,-0.0 -0.151 81.1 117.0 -96.0 38.2 -11.3 -0.6 3.8 10 10 A I < + 0 0 15 -3,-0.9 3,-0.1 26,-0.1 26,-0.1 0.133 12.0 105.1 -85.4-156.3 -9.2 -3.6 5.0 11 11 A T S S+ 0 0 99 1,-0.3 2,-0.3 2,-0.0 -1,-0.1 0.938 72.3 75.8 81.0 53.3 -10.4 -6.9 6.5 12 12 A C - 0 0 61 1,-0.1 -1,-0.3 2,-0.0 4,-0.3 -0.959 67.0-136.2-178.3 165.0 -9.9 -9.2 3.5 13 13 A N S > S+ 0 0 122 -2,-0.3 4,-2.1 2,-0.1 5,-0.2 0.718 97.9 65.7-104.5 -32.0 -7.3 -11.1 1.4 14 14 A H H > S+ 0 0 158 1,-0.2 4,-1.3 2,-0.2 5,-0.1 0.858 103.0 50.1 -59.2 -36.4 -8.6 -10.2 -2.1 15 15 A C H > S+ 0 0 49 2,-0.2 4,-2.6 1,-0.2 5,-0.2 0.873 107.8 52.8 -70.3 -38.3 -7.7 -6.6 -1.5 16 16 A V H > S+ 0 0 24 -4,-0.3 4,-2.3 1,-0.2 -2,-0.2 0.882 108.9 49.5 -64.7 -39.4 -4.2 -7.4 -0.3 17 17 A D H X S+ 0 0 107 -4,-2.1 4,-1.3 2,-0.2 -1,-0.2 0.828 113.3 47.2 -69.0 -32.5 -3.5 -9.4 -3.5 18 18 A K H X S+ 0 0 128 -4,-1.3 4,-1.2 -5,-0.2 -2,-0.2 0.895 116.9 41.5 -75.4 -42.0 -4.8 -6.5 -5.6 19 19 A I H X S+ 0 0 5 -4,-2.6 4,-3.4 2,-0.2 5,-0.3 0.817 116.1 50.5 -74.4 -31.4 -2.8 -3.9 -3.8 20 20 A E H X S+ 0 0 83 -4,-2.3 4,-1.3 -5,-0.2 -2,-0.2 0.811 106.5 55.1 -75.7 -30.3 0.2 -6.2 -3.6 21 21 A K H < S+ 0 0 181 -4,-1.3 -2,-0.2 -5,-0.2 -1,-0.2 0.847 122.0 29.2 -70.2 -33.3 0.0 -6.9 -7.3 22 22 A F H >< S+ 0 0 100 -4,-1.2 3,-1.2 2,-0.1 -2,-0.2 0.898 128.8 39.1 -90.3 -51.7 0.1 -3.1 -8.0 23 23 A V H >< S+ 0 0 0 -4,-3.4 3,-0.5 1,-0.3 -3,-0.2 0.748 94.7 86.0 -70.7 -23.8 2.2 -2.0 -5.0 24 24 A G T 3< S+ 0 0 42 -4,-1.3 -1,-0.3 -5,-0.3 2,-0.2 0.762 111.2 11.4 -48.2 -25.2 4.4 -5.0 -5.4 25 25 A E T < + 0 0 170 -3,-1.2 -1,-0.3 -4,-0.1 5,-0.0 -0.670 64.8 157.5-159.9 97.5 6.3 -3.0 -7.8 26 26 A I S < S- 0 0 19 -3,-0.5 24,-0.2 -2,-0.2 -3,-0.1 -0.336 75.3 -90.0-116.1 47.6 5.8 0.8 -8.3 27 27 A E S S+ 0 0 154 1,-0.1 -2,-0.0 2,-0.1 18,-0.0 0.842 125.4 34.5 48.3 37.3 9.1 1.6 -9.8 28 28 A G S S+ 0 0 10 1,-0.1 18,-0.8 16,-0.1 2,-0.6 0.396 77.1 137.3 154.7 41.5 10.4 2.2 -6.2 29 29 A V E +B 45 0A 30 16,-0.3 16,-0.3 1,-0.2 3,-0.1 -0.935 21.7 178.3-113.5 118.1 8.8 -0.2 -3.7 30 30 A S E S- 0 0 52 14,-3.7 2,-0.2 -2,-0.6 15,-0.2 0.912 72.9 -22.2 -80.8 -47.2 11.0 -1.8 -1.1 31 31 A F E -B 44 0A 144 13,-1.0 13,-2.0 2,-0.1 2,-0.9 -0.796 53.2-140.7-170.1 123.2 8.3 -3.8 0.8 32 32 A I E -B 43 0A 10 -2,-0.2 2,-0.4 11,-0.2 11,-0.3 -0.772 25.2-170.9 -92.2 104.5 4.5 -3.4 1.1 33 33 A D E -B 42 0A 84 9,-3.3 9,-1.7 -2,-0.9 2,-0.3 -0.777 4.0-176.0 -97.2 137.2 3.5 -4.2 4.6 34 34 A V E -B 41 0A 39 -2,-0.4 2,-0.4 7,-0.3 7,-0.3 -0.975 14.8-159.8-134.7 148.2 -0.1 -4.5 5.6 35 35 A S E >> +B 40 0A 36 5,-3.6 5,-1.6 -2,-0.3 4,-0.8 -0.941 11.6 174.1-131.7 110.6 -2.0 -5.1 8.8 36 36 A V T 45S+ 0 0 61 -2,-0.4 -1,-0.1 3,-0.2 -26,-0.1 0.951 86.2 45.5 -77.5 -53.8 -5.6 -6.5 8.8 37 37 A E T 45S+ 0 0 197 1,-0.2 -1,-0.1 2,-0.1 -2,-0.1 0.808 127.2 33.4 -59.8 -29.7 -6.1 -6.9 12.6 38 38 A K T 45S- 0 0 160 2,-0.1 -1,-0.2 -4,-0.0 -2,-0.2 0.606 102.0-135.2 -99.9 -17.2 -4.6 -3.4 13.0 39 39 A K T <5 + 0 0 107 -4,-0.8 2,-0.3 1,-0.2 -3,-0.2 0.928 60.9 126.0 61.5 46.4 -6.0 -2.0 9.7 40 40 A S E < - B 0 35A 43 -5,-1.6 -5,-3.6 -34,-0.2 2,-0.3 -0.846 46.0-153.9-130.4 166.8 -2.6 -0.4 8.9 41 41 A V E -AB 5 34A 7 -36,-3.5 -36,-3.9 -2,-0.3 2,-0.5 -0.938 6.2-174.0-148.1 122.2 -0.2 -0.4 6.0 42 42 A V E +AB 4 33A 53 -9,-1.7 -9,-3.3 -2,-0.3 2,-0.4 -0.961 12.1 176.9-119.7 117.8 3.5 0.3 6.0 43 43 A V E -AB 3 32A 1 -40,-1.3 -40,-2.7 -2,-0.5 2,-0.4 -0.966 19.6-146.0-124.9 138.8 5.3 0.5 2.7 44 44 A E E -AB 2 31A 88 -13,-2.0 -14,-3.7 -2,-0.4 -13,-1.0 -0.836 18.3-172.1-100.9 134.4 9.0 1.2 1.9 45 45 A F E - B 0 29A 31 -44,-0.7 -16,-0.3 -2,-0.4 6,-0.1 -0.991 11.5-141.9-132.1 135.7 9.8 3.1 -1.3 46 46 A D > - 0 0 87 -18,-0.8 3,-1.4 -2,-0.4 -16,-0.1 0.044 45.9 -76.9 -78.4-170.0 13.1 3.8 -2.9 47 47 A A T 3 S+ 0 0 89 1,-0.3 -19,-0.1 3,-0.0 -1,-0.1 0.751 126.8 60.0 -64.7 -26.5 14.3 7.0 -4.7 48 48 A P T 3 S+ 0 0 65 0, 0.0 -1,-0.3 0, 0.0 2,-0.2 0.250 105.4 58.3 -88.4 16.4 12.3 6.1 -7.9 49 49 A A < - 0 0 6 -3,-1.4 2,-0.3 -21,-0.2 -22,-0.1 -0.615 59.7-167.1-128.6-171.0 9.0 6.1 -6.0 50 50 A T >> - 0 0 71 -2,-0.2 3,-3.2 -24,-0.2 4,-1.6 -0.907 41.8-105.6-176.4 150.3 6.8 8.4 -3.9 51 51 A Q H 3> S+ 0 0 94 1,-0.3 4,-0.7 -2,-0.3 5,-0.1 0.652 122.8 60.5 -59.4 -11.4 3.8 8.1 -1.6 52 52 A D H 3> S+ 0 0 125 2,-0.2 4,-1.0 3,-0.1 -1,-0.3 0.567 102.6 51.3 -90.5 -10.8 2.0 9.7 -4.5 53 53 A L H <> S+ 0 0 52 -3,-3.2 4,-1.3 2,-0.2 -2,-0.2 0.832 110.0 45.7 -91.3 -40.1 2.9 6.7 -6.7 54 54 A I H X S+ 0 0 1 -4,-1.6 4,-2.9 2,-0.2 5,-0.2 0.776 117.2 46.9 -73.6 -26.0 1.7 4.1 -4.3 55 55 A K H X>S+ 0 0 75 -4,-0.7 4,-3.3 -5,-0.3 5,-0.5 0.910 109.9 50.6 -80.2 -45.8 -1.5 6.1 -3.8 56 56 A E H X5S+ 0 0 120 -4,-1.0 4,-0.6 3,-0.2 -2,-0.2 0.803 122.7 35.4 -61.6 -28.1 -2.1 6.7 -7.5 57 57 A A H X5S+ 0 0 18 -4,-1.3 4,-1.4 2,-0.2 -2,-0.2 0.893 122.1 41.9 -90.6 -50.5 -1.7 3.0 -8.0 58 58 A L H X>S+ 0 0 6 -4,-2.9 5,-2.0 2,-0.2 4,-0.6 0.868 119.6 46.6 -65.9 -35.9 -3.2 1.6 -4.8 59 59 A L H ><5S+ 0 0 89 -4,-3.3 3,-0.9 -5,-0.2 -1,-0.2 0.917 115.1 45.0 -72.3 -42.0 -6.1 4.1 -5.1 60 60 A D H 3<