==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER UNKNOWN FUNCTION 22-JAN-05 1YMZ . COMPND 2 MOLECULE: CC45; . SOURCE 2 SYNTHETIC: YES; . AUTHOR M.SOCOLICH,S.W.LOCKLESS,W.P.RUSS,H.LEE,K.H.GARDNER, . 37 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3297.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 19 51.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 27.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 16.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 179 0, 0.0 32,-0.1 0, 0.0 2,-0.1 0.000 360.0 360.0 360.0 90.2 -1.5 -10.2 -3.2 2 2 A P - 0 0 72 0, 0.0 33,-0.2 0, 0.0 0, 0.0 -0.332 360.0-130.2 -76.1 156.5 -4.0 -8.2 -5.2 3 3 A L - 0 0 99 31,-0.1 4,-0.2 4,-0.1 3,-0.1 -0.906 24.6-142.4-109.3 103.0 -4.7 -4.5 -4.7 4 4 A P - 0 0 12 0, 0.0 3,-0.4 0, 0.0 29,-0.0 -0.347 39.4 -77.8 -65.2 145.0 -8.5 -4.0 -4.3 5 5 A P S S+ 0 0 113 0, 0.0 3,-0.1 0, 0.0 18,-0.1 -0.147 120.6 42.8 -48.6 129.1 -9.9 -0.8 -5.9 6 6 A G S S+ 0 0 24 1,-0.4 16,-1.6 -3,-0.1 17,-1.2 0.587 90.3 111.6 101.2 17.3 -9.2 2.2 -3.8 7 7 A W E +A 21 0A 16 -3,-0.4 -1,-0.4 14,-0.3 2,-0.3 -0.988 38.1 174.5-123.9 134.2 -5.7 1.2 -3.0 8 8 A E E -A 20 0A 77 12,-2.4 12,-3.8 -2,-0.4 2,-0.5 -0.984 19.8-146.5-135.8 147.6 -2.6 3.0 -4.1 9 9 A R E -A 19 0A 144 -2,-0.3 2,-0.4 10,-0.2 10,-0.2 -0.968 19.8-173.4-117.7 125.1 1.1 2.6 -3.4 10 10 A R E -A 18 0A 143 8,-3.1 8,-2.9 -2,-0.5 2,-0.4 -0.935 16.8-137.7-122.9 141.0 3.4 5.6 -3.3 11 11 A T E -A 17 0A 110 -2,-0.4 6,-0.3 6,-0.3 2,-0.2 -0.807 16.9-149.9 -98.6 135.3 7.1 6.0 -2.9 12 12 A D > - 0 0 67 4,-3.1 3,-2.2 -2,-0.4 4,-0.1 -0.479 35.0 -98.2 -94.2 171.1 8.6 8.7 -0.7 13 13 A V T 3 S+ 0 0 140 1,-0.3 -1,-0.1 -2,-0.2 -2,-0.0 0.820 121.3 67.6 -60.3 -28.5 11.9 10.4 -1.2 14 14 A E T 3 S- 0 0 125 1,-0.1 -1,-0.3 2,-0.1 3,-0.1 0.592 119.7-109.8 -66.3 -9.8 13.4 8.0 1.4 15 16 A G S < S+ 0 0 65 -3,-2.2 2,-0.2 1,-0.3 -2,-0.2 0.555 77.8 134.8 87.9 8.5 12.9 5.3 -1.2 16 17 A K - 0 0 92 -4,-0.1 -4,-3.1 1,-0.0 2,-0.6 -0.617 50.1-139.6 -89.8 150.5 10.1 3.8 1.0 17 18 A V E -A 11 0A 50 -6,-0.3 2,-0.3 -2,-0.2 -6,-0.3 -0.946 18.3-171.6-114.9 115.1 6.8 2.7 -0.4 18 19 A Y E -A 10 0A 44 -8,-2.9 -8,-3.1 -2,-0.6 2,-0.5 -0.813 18.8-130.0-105.2 148.3 3.7 3.5 1.7 19 20 A Y E -AB 9 28A 39 9,-2.9 9,-3.2 -2,-0.3 2,-0.6 -0.849 17.0-160.4-106.0 126.4 0.2 2.2 0.9 20 21 A F E -AB 8 27A 45 -12,-3.8 -12,-2.4 -2,-0.5 2,-1.1 -0.913 11.4-151.3-112.8 113.8 -2.7 4.6 0.7 21 22 A N E >> -AB 7 26A 7 5,-2.8 5,-2.0 -2,-0.6 4,-1.2 -0.743 13.5-169.2 -78.6 100.4 -6.2 3.3 1.0 22 23 A V T 45S+ 0 0 74 -16,-1.6 -1,-0.2 -2,-1.1 -15,-0.2 0.756 79.3 63.2 -66.6 -24.0 -7.9 6.0 -1.1 23 24 A R T 45S+ 0 0 127 -17,-1.2 -1,-0.2 1,-0.2 -16,-0.1 0.904 121.1 19.4 -69.6 -42.5 -11.3 4.8 0.1 24 25 A T T 45S- 0 0 89 -3,-0.4 -1,-0.2 -18,-0.3 -2,-0.2 0.339 105.5-119.2-108.7 3.4 -10.8 5.6 3.7 25 26 A L T <5 + 0 0 127 -4,-1.2 2,-0.4 1,-0.2 -3,-0.2 0.862 58.4 159.5 59.8 40.5 -7.9 8.0 3.1 26 27 A T E < -B 21 0A 62 -5,-2.0 -5,-2.8 2,-0.0 2,-0.7 -0.802 32.6-158.4-100.5 130.8 -5.6 5.8 5.2 27 28 A T E +B 20 0A 84 -2,-0.4 2,-0.3 -7,-0.2 -7,-0.2 -0.919 31.0 155.7-107.6 109.8 -1.8 5.9 4.9 28 29 A T E -B 19 0A 39 -9,-3.2 -9,-2.9 -2,-0.7 2,-0.2 -0.921 52.8-129.8-136.2 156.0 -0.3 2.7 6.1 29 30 A W S S+ 0 0 160 -2,-0.3 2,-0.5 -11,-0.2 -9,-0.1 -0.285 75.7 113.2 -96.0 45.3 2.8 0.5 5.7 30 31 A E S S- 0 0 97 -2,-0.2 -2,-0.2 -11,-0.2 3,-0.1 -0.976 70.7-122.0-127.1 117.1 0.6 -2.5 5.1 31 32 A R - 0 0 178 -2,-0.5 2,-0.2 1,-0.1 -2,-0.1 -0.334 43.7 -94.6 -54.9 133.0 0.4 -4.3 1.8 32 33 A P - 0 0 15 0, 0.0 -1,-0.1 0, 0.0 2,-0.1 -0.327 49.3-151.7 -54.4 112.5 -3.1 -4.4 0.4 33 34 A T - 0 0 58 -2,-0.2 2,-1.8 1,-0.1 3,-0.1 -0.249 37.6 -71.0 -82.0 173.0 -4.5 -7.7 1.5 34 35 A I S S- 0 0 127 1,-0.1 -1,-0.1 -31,-0.1 -31,-0.1 -0.515 111.4 -25.5 -67.9 86.8 -7.2 -9.8 -0.2 35 36 A I - 0 0 103 -2,-1.8 2,-0.4 -33,-0.2 -1,-0.1 0.568 69.7-143.6 74.0 132.0 -10.1 -7.4 0.6 36 37 A L 0 0 54 -3,-0.1 -1,-0.1 -4,-0.0 -2,-0.0 -0.987 360.0 360.0-128.8 124.5 -10.0 -5.0 3.6 37 38 A E 0 0 240 -2,-0.4 0, 0.0 0, 0.0 0, 0.0 -0.861 360.0 360.0-118.8 360.0 -13.0 -4.2 5.6