==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=6-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER GENE REGULATION, HYDROLASE 30-MAR-07 2YQP . COMPND 2 MOLECULE: PROBABLE ATP-DEPENDENT RNA HELICASE DDX59; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR F.HE,Y.MUTO,M.INOUE,T.KIGAWA,M.SHIROUZU,T.TARADA,S.YOKOYAMA, . 60 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5521.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 23 38.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 5.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 12 20.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 126 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-130.3 -8.7 -17.4 -9.0 2 2 A S - 0 0 120 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.357 360.0-169.5-154.1 -42.2 -4.9 -17.8 -9.2 3 3 A S - 0 0 125 2,-0.0 2,-0.1 0, 0.0 0, 0.0 0.097 13.8-128.3 61.3 178.1 -3.3 -14.5 -10.2 4 4 A G - 0 0 68 1,-0.3 2,-0.1 0, 0.0 0, 0.0 -0.103 36.3 -50.6-130.8-130.8 0.3 -14.2 -11.3 5 5 A S - 0 0 129 1,-0.1 -1,-0.3 -2,-0.1 2,-0.1 -0.418 51.4 -99.7-108.6-174.5 3.3 -12.1 -10.3 6 6 A S - 0 0 90 1,-0.2 -1,-0.1 -2,-0.1 0, 0.0 -0.315 41.4 -87.4 -98.2-176.3 4.0 -8.4 -9.9 7 7 A G - 0 0 57 -2,-0.1 -1,-0.2 1,-0.1 0, 0.0 0.347 43.8 -97.0 -71.4-151.3 5.6 -5.8 -12.2 8 8 A F S S+ 0 0 204 2,-0.0 2,-0.4 0, 0.0 -1,-0.1 -0.337 71.6 128.0-131.5 51.7 9.3 -5.1 -12.5 9 9 A S - 0 0 60 1,-0.0 3,-0.0 2,-0.0 33,-0.0 -0.859 37.7-169.3-111.8 145.2 9.7 -2.0 -10.3 10 10 A K + 0 0 186 -2,-0.4 3,-0.1 1,-0.1 -1,-0.0 -0.284 46.9 122.5-125.4 46.5 12.2 -1.4 -7.4 11 11 A T + 0 0 58 1,-0.2 19,-0.3 2,-0.0 -1,-0.1 -0.153 47.9 93.6 -99.7 37.8 10.9 1.8 -5.9 12 12 A Q + 0 0 60 15,-0.1 -1,-0.2 17,-0.1 3,-0.1 -0.332 52.8 143.6-124.3 49.8 10.4 0.2 -2.5 13 13 A R - 0 0 198 1,-0.2 -2,-0.0 -3,-0.1 -3,-0.0 -0.255 59.6 -64.1 -82.6 173.8 13.7 1.1 -0.8 14 14 A W - 0 0 201 1,-0.1 2,-0.4 -2,-0.1 -1,-0.2 -0.057 50.1-141.1 -53.7 159.0 14.2 2.0 2.9 15 15 A A - 0 0 24 12,-0.1 3,-0.1 -3,-0.1 -1,-0.1 -0.992 14.4-116.7-132.4 128.6 12.6 5.2 4.2 16 16 A E > - 0 0 151 -2,-0.4 2,-2.1 1,-0.2 3,-1.3 -0.052 48.2 -83.2 -55.3 160.5 14.1 7.7 6.6 17 17 A P T 3 S+ 0 0 138 0, 0.0 -1,-0.2 0, 0.0 0, 0.0 -0.442 122.6 32.1 -69.8 79.4 12.4 8.2 10.0 18 18 A G T 3 S+ 0 0 81 -2,-2.1 -2,-0.1 1,-0.5 -3,-0.0 0.114 91.4 99.9 162.6 -30.5 9.7 10.7 8.9 19 19 A E S < S- 0 0 87 -3,-1.3 -1,-0.5 1,-0.1 -4,-0.1 -0.364 79.1 -90.6 -79.4 160.4 8.8 9.9 5.3 20 20 A P - 0 0 33 0, 0.0 9,-2.9 0, 0.0 2,-0.4 -0.327 39.6-156.9 -69.7 151.2 5.7 7.9 4.3 21 21 A I - 0 0 73 7,-0.4 18,-0.2 8,-0.1 8,-0.1 -0.981 28.3 -90.4-133.8 144.8 5.8 4.1 4.0 22 22 A C - 0 0 9 -2,-0.4 18,-0.2 1,-0.1 7,-0.1 -0.158 24.9-150.7 -50.3 140.0 3.6 1.6 2.1 23 23 A V S S+ 0 0 63 16,-1.5 -1,-0.1 1,-0.1 17,-0.1 0.449 97.2 35.0 -93.3 -2.5 0.7 0.3 4.1 24 24 A V S S+ 0 0 59 15,-0.2 -1,-0.1 0, 0.0 16,-0.1 0.612 128.8 29.4-119.5 -28.6 0.7 -3.0 2.2 25 25 A C S S- 0 0 72 3,-0.1 -2,-0.1 0, 0.0 15,-0.0 0.860 87.7-130.9 -96.1 -79.1 4.4 -3.5 1.6 26 26 A G S S+ 0 0 41 2,-0.1 -3,-0.1 -12,-0.0 3,-0.1 0.677 75.4 78.6 123.4 48.9 6.6 -2.0 4.3 27 27 A R S S- 0 0 112 1,-0.1 2,-0.3 -13,-0.1 -12,-0.1 0.410 94.1 -23.7-139.3 -71.0 9.3 0.1 2.7 28 28 A Y - 0 0 27 -7,-0.1 2,-0.5 -17,-0.1 -7,-0.4 -0.992 39.0-142.7-155.4 148.7 8.4 3.6 1.4 29 29 A G + 0 0 0 -9,-2.9 12,-0.3 -2,-0.3 11,-0.2 -0.646 25.7 164.6-116.1 75.2 5.3 5.4 0.2 30 30 A E S S+ 0 0 94 -2,-0.5 2,-0.3 -19,-0.3 11,-0.2 0.764 70.4 58.8 -58.8 -24.9 6.4 7.6 -2.7 31 31 A Y E -A 40 0A 127 9,-3.3 9,-3.1 -3,-0.2 2,-0.4 -0.834 67.5-169.5-109.6 146.6 2.7 7.9 -3.6 32 32 A I E -A 39 0A 92 -2,-0.3 7,-0.2 7,-0.2 6,-0.1 -0.990 14.0-137.6-139.1 128.5 -0.1 9.3 -1.3 33 33 A C - 0 0 23 5,-0.5 7,-0.0 -2,-0.4 13,-0.0 0.019 9.2-138.1 -69.9-176.9 -3.8 9.2 -1.9 34 34 A D S S+ 0 0 140 3,-0.1 -1,-0.1 2,-0.0 0, 0.0 0.781 93.9 39.7-109.9 -58.3 -6.2 12.0 -1.2 35 35 A K S S+ 0 0 192 1,-0.2 -2,-0.0 2,-0.1 0, 0.0 0.972 136.1 21.4 -58.4 -58.1 -9.3 10.6 0.5 36 36 A T S S- 0 0 40 1,-0.0 -1,-0.2 2,-0.0 3,-0.1 0.741 89.9-150.8 -82.6 -25.2 -7.4 8.2 2.7 37 37 A D + 0 0 97 1,-0.1 -3,-0.1 -5,-0.0 -2,-0.1 0.708 43.1 152.8 60.9 19.0 -4.2 10.1 2.4 38 38 A E - 0 0 61 -6,-0.1 -5,-0.5 1,-0.1 2,-0.4 0.170 43.0-111.2 -64.6-169.5 -2.5 6.8 2.9 39 39 A D E +A 32 0A 42 -18,-0.2 -16,-1.5 -7,-0.2 2,-0.3 -0.997 36.5 165.1-135.3 133.4 1.0 5.9 1.5 40 40 A V E -A 31 0A 4 -9,-3.1 -9,-3.3 -2,-0.4 3,-0.1 -0.945 33.5-146.1-142.5 162.6 2.0 3.5 -1.2 41 41 A C S S+ 0 0 5 -2,-0.3 2,-0.2 -12,-0.3 -1,-0.1 0.796 85.1 18.7 -97.1 -38.0 5.0 2.7 -3.4 42 42 A S S > S- 0 0 36 -11,-0.1 4,-0.7 1,-0.0 -11,-0.1 -0.556 81.9-103.8-121.9-173.0 3.2 1.7 -6.6 43 43 A L H > S+ 0 0 122 -2,-0.2 4,-1.4 2,-0.2 5,-0.2 0.801 115.9 58.5 -84.2 -32.1 -0.3 2.1 -8.2 44 44 A E H > S+ 0 0 116 1,-0.2 4,-1.6 2,-0.2 -1,-0.2 0.848 102.8 54.3 -65.6 -34.7 -1.4 -1.5 -7.3 45 45 A C H > S+ 0 0 11 2,-0.2 4,-1.3 1,-0.2 -1,-0.2 0.848 101.9 60.2 -67.9 -34.7 -0.8 -0.8 -3.6 46 46 A K H >X S+ 0 0 82 -4,-0.7 4,-2.4 1,-0.2 3,-1.2 0.985 112.6 33.6 -56.3 -65.5 -3.1 2.2 -3.8 47 47 A A H 3X S+ 0 0 55 -4,-1.4 4,-2.6 1,-0.3 5,-0.3 0.811 111.1 67.1 -61.5 -30.4 -6.2 0.4 -4.9 48 48 A K H 3< S+ 0 0 111 -4,-1.6 -1,-0.3 -5,-0.2 -2,-0.2 0.804 111.3 33.8 -60.6 -29.5 -5.1 -2.6 -2.8 49 49 A H H X S+ 0 0 51 -4,-2.4 4,-1.6 1,-0.2 3,-0.8 0.965 110.1 45.4 -61.4 -54.8 -8.6 1.6 -0.9 51 51 A L H 3X S+ 0 0 115 -4,-2.6 4,-0.9 1,-0.3 -1,-0.2 0.673 114.1 53.5 -63.5 -15.7 -10.7 -1.4 -1.8 52 52 A Q H 3> S+ 0 0 111 -5,-0.3 4,-0.5 2,-0.2 -1,-0.3 0.718 106.0 50.6 -90.1 -25.0 -9.6 -2.9 1.5 53 53 A V H X S+ 0 0 164 -4,-1.6 3,-1.4 1,-0.2 4,-0.9 0.954 103.7 49.4 -69.5 -51.8 -14.2 0.1 1.9 55 55 A E H 3< S+ 0 0 121 -4,-0.9 3,-0.3 1,-0.3 -1,-0.2 0.769 104.2 63.5 -59.0 -25.4 -15.1 -3.4 3.0 56 56 A K H 3< S+ 0 0 150 -4,-0.5 -1,-0.3 1,-0.2 -2,-0.2 0.808 97.0 55.8 -69.2 -29.9 -14.0 -2.4 6.5 57 57 A E H << S- 0 0 148 -3,-1.4 -1,-0.2 -4,-0.7 -2,-0.2 0.768 97.5-159.9 -73.0 -26.3 -16.8 0.2 6.6 58 58 A E < + 0 0 139 -4,-0.9 -2,-0.1 -3,-0.3 -1,-0.0 0.240 46.7 59.2 63.1 165.2 -19.4 -2.5 5.9 59 59 A K 0 0 182 1,-0.2 -2,-0.1 -4,-0.1 -1,-0.0 0.269 360.0 360.0 63.1 162.9 -22.8 -1.8 4.5 60 60 A S 0 0 168 -3,-0.0 -1,-0.2 0, 0.0 -2,-0.0 0.085 360.0 360.0 53.9 360.0 -23.5 0.0 1.3