==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=6-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER GENE REGULATION 02-APR-07 2YRM . COMPND 2 MOLECULE: B-CELL LYMPHOMA 6 PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR T.TOMIZAWA,K.SAITO,S.KOSHIBA,S.WATANABE,T.HARADA,T.KIGAWA, . 43 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4005.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 20 46.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 4.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 11.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 7.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 9 20.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 135 0, 0.0 2,-0.3 0, 0.0 3,-0.1 0.000 360.0 360.0 360.0 134.7 0.7 -15.9 -9.9 2 2 A S - 0 0 101 2,-0.2 0, 0.0 1,-0.2 0, 0.0 -0.738 360.0 -64.7-111.1 160.3 -1.9 -14.5 -12.4 3 3 A S S S+ 0 0 132 -2,-0.3 -1,-0.2 2,-0.0 0, 0.0 0.022 102.6 61.5 -39.0 142.8 -5.5 -13.5 -11.9 4 4 A G + 0 0 73 1,-0.2 2,-0.3 -3,-0.1 -2,-0.2 0.740 56.7 157.6 97.5 97.3 -7.8 -16.3 -10.8 5 5 A S - 0 0 101 -4,-0.1 -1,-0.2 0, 0.0 2,-0.2 -0.974 43.4-107.7-153.6 135.7 -7.1 -18.2 -7.6 6 6 A S S S+ 0 0 135 -2,-0.3 0, 0.0 2,-0.0 0, 0.0 -0.410 91.5 11.2 -64.4 130.5 -9.2 -20.4 -5.3 7 7 A G S S- 0 0 62 -2,-0.2 0, 0.0 0, 0.0 0, 0.0 0.680 90.6 -98.5 70.5 124.6 -10.0 -18.6 -2.0 8 8 A N S S+ 0 0 152 1,-0.1 14,-0.1 2,-0.0 13,-0.0 -0.222 71.4 109.0 -69.2 162.4 -9.3 -14.9 -1.6 9 9 A G + 0 0 28 12,-0.2 12,-0.1 11,-0.0 13,-0.1 0.578 21.4 133.9 130.5 63.6 -6.2 -13.7 0.2 10 10 A A + 0 0 73 11,-0.3 2,-0.5 10,-0.2 11,-0.1 -0.165 43.4 103.5-127.4 38.6 -3.6 -12.1 -2.0 11 11 A F B +A 20 0A 61 9,-0.6 9,-1.4 11,-0.0 2,-0.4 -0.945 39.5 170.3-127.8 111.5 -2.7 -9.0 0.1 12 12 A F - 0 0 143 -2,-0.5 7,-0.2 7,-0.2 5,-0.1 -0.977 39.8-106.1-124.5 131.0 0.5 -8.9 2.1 13 13 A C - 0 0 7 -2,-0.4 5,-0.3 1,-0.1 14,-0.0 -0.228 22.0-154.8 -52.7 133.7 1.9 -5.8 3.8 14 14 A N S S+ 0 0 137 1,-0.1 -1,-0.1 3,-0.1 3,-0.0 0.900 92.4 46.0 -78.5 -43.9 5.0 -4.4 2.0 15 15 A E S S+ 0 0 108 19,-0.0 2,-0.2 2,-0.0 -1,-0.1 0.951 128.0 12.5 -63.8 -51.2 6.6 -2.7 5.0 16 16 A C S S- 0 0 36 18,-0.0 2,-0.7 0, 0.0 14,-0.0 -0.608 89.5 -91.6-118.9-180.0 6.1 -5.7 7.3 17 17 A D + 0 0 146 -2,-0.2 2,-0.3 -5,-0.1 -3,-0.1 -0.859 67.8 114.6-100.5 114.2 5.2 -9.4 6.9 18 18 A C - 0 0 54 -2,-0.7 2,-0.3 -5,-0.3 -5,-0.1 -0.932 46.0-130.5-160.8-179.5 1.4 -10.1 7.2 19 19 A R - 0 0 183 -2,-0.3 2,-0.3 -7,-0.2 -7,-0.2 -0.996 12.4-170.9-147.0 148.3 -1.7 -11.3 5.5 20 20 A F B -A 11 0A 33 -9,-1.4 -9,-0.6 -2,-0.3 -10,-0.2 -0.997 21.1-149.8-144.0 136.5 -5.3 -10.1 5.0 21 21 A S S S+ 0 0 78 -2,-0.3 -11,-0.3 -12,-0.1 2,-0.2 0.908 88.5 39.8 -69.3 -43.1 -8.4 -11.7 3.5 22 22 A E S > S- 0 0 132 1,-0.1 4,-1.1 -13,-0.1 -11,-0.0 -0.667 77.2-130.3-106.2 162.6 -9.9 -8.4 2.4 23 23 A E H > S+ 0 0 83 -2,-0.2 4,-2.2 2,-0.2 5,-0.2 0.886 107.4 54.7 -76.9 -41.2 -8.2 -5.3 0.9 24 24 A A H > S+ 0 0 71 1,-0.2 4,-1.8 2,-0.2 -1,-0.2 0.868 104.2 56.6 -60.0 -37.9 -9.8 -2.9 3.3 25 25 A S H > S+ 0 0 59 2,-0.2 4,-1.8 1,-0.2 -1,-0.2 0.930 110.2 43.7 -60.2 -47.6 -8.5 -4.8 6.2 26 26 A L H X S+ 0 0 17 -4,-1.1 4,-2.3 2,-0.2 5,-0.3 0.987 107.0 57.4 -61.7 -62.3 -4.9 -4.5 5.0 27 27 A K H X S+ 0 0 141 -4,-2.2 4,-1.8 1,-0.3 -1,-0.2 0.855 107.8 50.6 -34.8 -52.2 -5.0 -0.9 4.0 28 28 A R H >X S+ 0 0 177 -4,-1.8 4,-2.8 1,-0.2 3,-0.6 0.959 108.1 50.5 -53.9 -57.5 -6.0 -0.1 7.6 29 29 A H H 3X>S+ 0 0 30 -4,-1.8 4,-2.6 1,-0.3 5,-1.0 0.907 106.7 56.0 -47.5 -49.2 -3.2 -2.1 9.1 30 30 A T H 3X5S+ 0 0 33 -4,-2.3 4,-1.1 3,-0.2 -1,-0.3 0.890 116.2 37.2 -51.9 -43.4 -0.7 -0.3 6.9 31 31 A L H <<5S+ 0 0 105 -4,-1.8 -2,-0.2 -3,-0.6 -1,-0.2 0.985 123.0 39.3 -73.3 -63.3 -1.9 3.0 8.3 32 32 A Q H ><5S+ 0 0 150 -4,-2.8 3,-0.6 1,-0.2 -3,-0.2 0.956 128.2 34.3 -51.1 -59.2 -2.5 2.1 11.9 33 33 A T H 3<5S+ 0 0 80 -4,-2.6 2,-0.6 -5,-0.3 -3,-0.2 0.956 134.8 27.8 -62.6 -52.7 0.6 -0.1 12.2 34 34 A H T 3<