==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER VIRAL PROTEIN 09-FEB-05 1YSY . COMPND 2 MOLECULE: REPLICASE POLYPROTEIN 1AB (PP1AB) (ORF1AB); . SOURCE 2 ORGANISM_SCIENTIFIC: SARS CORONAVIRUS; . AUTHOR W.PETI,T.HERRMANN,M.A.JOHNSON,P.KUHN,R.C.STEVENS,K.WUTHRICH, . 85 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5950.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 56 65.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 3.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 19 22.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 32 37.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 2.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 130 0, 0.0 2,-0.5 0, 0.0 3,-0.1 0.000 360.0 360.0 360.0 140.8 -21.6 -7.5 3.1 2 2 A H - 0 0 148 1,-0.2 4,-0.1 4,-0.0 3,-0.1 -0.700 360.0-159.0 -78.0 123.3 -19.0 -4.7 2.6 3 3 A S S S- 0 0 119 -2,-0.5 2,-0.3 1,-0.3 -1,-0.2 0.929 72.9 -20.6 -69.0 -45.4 -17.3 -3.7 5.9 4 4 A K S S+ 0 0 78 1,-0.2 -1,-0.3 -3,-0.1 37,-0.1 -0.979 115.9 38.6-152.6 171.3 -16.3 -0.4 4.4 5 5 A M - 0 0 17 -2,-0.3 2,-0.8 1,-0.2 3,-0.2 0.967 64.2-166.0 54.2 65.6 -15.7 1.6 1.2 6 6 A S - 0 0 70 1,-0.2 -1,-0.2 -4,-0.1 -4,-0.0 -0.798 60.8 -26.0 -92.2 104.0 -18.6 0.1 -0.9 7 7 A D + 0 0 147 -2,-0.8 -1,-0.2 1,-0.1 -2,-0.1 0.955 68.5 155.3 44.9 104.2 -18.1 0.9 -4.6 8 8 A V - 0 0 81 -3,-0.2 2,-2.4 0, 0.0 -1,-0.1 -0.259 62.8-109.2-147.1 24.3 -16.0 4.1 -5.0 9 9 A K S S+ 0 0 200 1,-0.2 3,-0.2 4,-0.0 2,-0.1 -0.384 107.8 49.1 72.5 -58.0 -14.8 3.2 -8.5 10 10 A C >> + 0 0 64 -2,-2.4 4,-0.9 1,-0.2 3,-0.6 -0.277 64.1 132.9-120.0 45.3 -11.1 2.4 -7.6 11 11 A T T 34 S+ 0 0 33 1,-0.2 4,-0.3 2,-0.1 -1,-0.2 0.975 84.7 17.3 -47.3 -74.1 -11.2 0.1 -4.6 12 12 A S T 34 S+ 0 0 70 -3,-0.2 -1,-0.2 1,-0.1 -2,-0.1 -0.140 119.4 64.4-111.8 37.4 -8.7 -2.6 -5.6 13 13 A V T X> S+ 0 0 71 -3,-0.6 4,-2.3 3,-0.1 3,-0.7 0.691 79.8 71.0-122.4 -49.9 -6.9 -0.8 -8.3 14 14 A V T 3< S+ 0 0 49 -4,-0.9 4,-0.1 1,-0.3 -2,-0.1 0.831 105.2 38.8 -49.3 -52.0 -5.0 2.2 -6.8 15 15 A L T >> S+ 0 0 0 -4,-0.3 4,-2.1 1,-0.2 3,-0.9 0.788 112.7 57.1 -75.4 -27.9 -2.3 0.4 -4.9 16 16 A L T <4 S+ 0 0 50 -3,-0.7 -1,-0.2 1,-0.2 -2,-0.2 0.884 104.2 54.7 -66.2 -33.7 -1.9 -2.2 -7.7 17 17 A S T 3< S+ 0 0 87 -4,-2.3 -1,-0.2 3,-0.1 -2,-0.2 0.466 122.8 26.2 -77.3 -2.8 -1.2 0.9 -10.0 18 18 A V T <4 S+ 0 0 73 -3,-0.9 4,-0.3 -5,-0.2 5,-0.3 0.659 125.7 28.4-121.1 -62.5 1.6 2.0 -7.6 19 19 A L S >X S+ 0 0 8 -4,-2.1 4,-2.4 1,-0.2 3,-2.1 0.993 127.2 31.9 -76.3 -76.0 3.3 -0.8 -5.5 20 20 A Q T 34 S+ 0 0 41 -5,-0.5 -1,-0.2 1,-0.3 -4,-0.1 0.557 95.1 94.3 -55.8 -11.7 3.1 -4.1 -7.4 21 21 A Q T 34 S- 0 0 105 -6,-0.4 -1,-0.3 -5,-0.1 -2,-0.2 0.843 121.9 -21.9 -50.9 -35.2 3.3 -2.0 -10.5 22 22 A L T <4 S+ 0 0 144 -3,-2.1 -2,-0.2 -4,-0.3 -3,-0.1 0.473 134.7 62.9-140.9 -35.0 7.1 -2.8 -10.2 23 23 A R S < S+ 0 0 111 -4,-2.4 2,-0.4 -5,-0.3 -3,-0.2 0.997 108.4 29.9 -65.3 -73.5 8.0 -3.8 -6.6 24 24 A V S S- 0 0 1 1,-0.1 -1,-0.2 4,-0.0 3,-0.1 -0.779 83.8-141.9 -92.2 125.0 6.1 -7.0 -5.9 25 25 A E - 0 0 129 -2,-0.4 2,-0.3 1,-0.2 -1,-0.1 0.964 47.6 -59.4 -61.8 -76.2 5.6 -8.9 -9.2 26 26 A S S S+ 0 0 79 1,-0.1 -1,-0.2 0, 0.0 5,-0.0 -0.900 97.6 19.7-171.9 154.3 2.1 -10.5 -9.3 27 27 A S + 0 0 110 -2,-0.3 2,-0.4 1,-0.1 -1,-0.1 0.917 59.7 148.9 35.7 86.6 -0.1 -13.1 -7.4 28 28 A S > - 0 0 32 1,-0.1 4,-3.1 -3,-0.1 5,-0.2 -0.916 34.6-161.8-132.3 110.1 1.3 -13.4 -3.9 29 29 A K H > S+ 0 0 190 -2,-0.4 4,-1.7 1,-0.2 -1,-0.1 0.865 98.0 63.5 -51.9 -32.6 -1.4 -14.3 -1.3 30 30 A L H >4 S+ 0 0 57 2,-0.2 3,-0.6 1,-0.2 4,-0.2 0.967 109.7 34.1 -50.5 -63.4 1.4 -13.0 1.0 31 31 A W H >> S+ 0 0 19 1,-0.2 4,-2.2 2,-0.2 3,-2.1 0.898 113.0 60.6 -64.2 -39.5 1.3 -9.5 -0.5 32 32 A A H 3X S+ 0 0 26 -4,-3.1 4,-2.8 1,-0.3 5,-0.3 0.810 86.7 76.4 -60.0 -27.7 -2.5 -9.7 -1.0 33 33 A Q H << S+ 0 0 94 -4,-1.7 -1,-0.3 -3,-0.6 4,-0.3 0.670 112.4 25.3 -58.9 -18.8 -2.7 -10.1 2.9 34 34 A C H <> S+ 0 0 30 -3,-2.1 4,-2.2 -4,-0.2 -1,-0.2 0.609 112.7 67.0-110.7 -29.0 -2.0 -6.3 2.9 35 35 A V H < S+ 0 0 18 -4,-2.2 4,-0.5 1,-0.2 -2,-0.2 0.837 101.1 54.1 -64.4 -25.6 -3.4 -5.4 -0.5 36 36 A Q T >X S+ 0 0 116 -4,-2.8 3,-2.0 2,-0.2 4,-0.7 0.973 107.3 48.2 -61.2 -57.9 -6.8 -6.4 0.9 37 37 A L H >> S+ 0 0 83 1,-0.3 4,-2.7 -5,-0.3 3,-1.1 0.847 98.7 68.4 -62.9 -32.3 -6.5 -4.0 3.9 38 38 A H H 3X S+ 0 0 1 -4,-2.2 4,-0.6 1,-0.2 -1,-0.3 0.783 94.6 58.4 -52.3 -32.5 -5.4 -1.1 1.6 39 39 A N H <4 S+ 0 0 29 -3,-2.0 3,-0.3 -4,-0.5 -1,-0.2 0.842 111.9 39.3 -66.7 -35.8 -9.0 -1.2 0.2 40 40 A D H X< S+ 0 0 54 -3,-1.1 3,-1.8 -4,-0.7 -2,-0.2 0.894 104.2 70.1 -80.5 -41.5 -10.4 -0.5 3.7 41 41 A I H >< S+ 0 0 20 -4,-2.7 3,-1.2 1,-0.3 4,-0.3 0.663 76.5 82.6 -49.3 -24.3 -7.6 1.9 4.6 42 42 A L T 3< S+ 0 0 33 -4,-0.6 9,-0.3 1,-0.3 2,-0.3 0.834 98.2 40.7 -58.3 -31.5 -9.0 4.6 2.1 43 43 A L T < S+ 0 0 105 -3,-1.8 -1,-0.3 -4,-0.2 -2,-0.1 -0.495 86.3 112.2-107.5 54.7 -11.5 5.6 4.8 44 44 A A S < S- 0 0 57 -3,-1.2 -1,-0.2 -2,-0.3 -2,-0.1 0.825 97.5 -37.2 -89.6 -40.8 -8.9 5.4 7.6 45 45 A K S S- 0 0 145 -3,-0.3 2,-0.3 -4,-0.3 -3,-0.1 0.339 113.8 -20.6-153.3 -74.2 -8.5 9.1 8.6 46 46 A D S > S- 0 0 103 -4,-0.0 4,-2.7 0, 0.0 5,-0.3 -0.930 74.6 -91.5-151.1 161.2 -8.6 11.6 5.8 47 47 A T H > S+ 0 0 112 -2,-0.3 4,-0.9 1,-0.2 5,-0.2 0.727 124.3 44.5 -55.0 -30.2 -7.9 11.1 2.0 48 48 A T H > S+ 0 0 80 2,-0.1 4,-2.9 3,-0.1 5,-0.2 0.986 117.4 37.5 -68.1 -77.5 -4.2 11.9 2.5 49 49 A E H > S+ 0 0 86 1,-0.2 4,-1.6 2,-0.2 -2,-0.2 0.686 117.5 54.1 -64.3 -24.1 -3.2 9.9 5.6 50 50 A A H X S+ 0 0 0 -4,-2.7 4,-1.8 -8,-0.2 -1,-0.2 0.994 114.6 36.0 -59.5 -76.2 -5.5 7.0 4.6 51 51 A F H X S+ 0 0 62 -4,-0.9 4,-1.0 -9,-0.3 -2,-0.2 0.868 115.6 59.2 -50.5 -41.5 -4.1 6.4 1.1 52 52 A E H >X S+ 0 0 18 -4,-2.9 4,-1.5 1,-0.2 3,-1.4 0.955 107.9 42.6 -52.2 -54.1 -0.6 7.3 2.5 53 53 A K H 3X S+ 0 0 104 -4,-1.6 4,-1.8 1,-0.3 -1,-0.2 0.785 103.7 67.5 -70.1 -21.9 -0.7 4.5 5.0 54 54 A M H 3X S+ 0 0 4 -4,-1.8 4,-0.6 1,-0.2 -1,-0.3 0.783 106.4 42.2 -64.0 -29.7 -2.2 2.2 2.3 55 55 A V H X S+ 0 0 38 -4,-1.5 4,-1.6 29,-0.2 3,-1.5 0.970 98.0 52.4 -52.7 -67.6 3.0 2.1 4.0 57 57 A L H 3X S+ 0 0 27 -4,-1.8 4,-2.7 1,-0.3 3,-0.4 0.815 110.0 47.2 -35.5 -61.6 1.8 -1.5 4.7 58 58 A L H 3X S+ 0 0 2 -4,-0.6 4,-1.4 1,-0.2 -1,-0.3 0.756 106.9 57.1 -61.2 -30.0 3.0 -2.9 1.4 59 59 A S H << S+ 0 0 12 -3,-1.5 4,-0.2 -4,-1.3 -1,-0.2 0.890 114.1 38.6 -72.2 -35.1 6.4 -1.3 1.7 60 60 A V H >< S+ 0 0 88 -4,-1.6 3,-1.9 -3,-0.4 4,-0.4 0.937 114.5 55.4 -72.6 -48.0 7.1 -3.0 5.1 61 61 A L H 3X S+ 0 0 10 -4,-2.7 4,-1.9 1,-0.3 -2,-0.2 0.743 89.5 74.7 -59.2 -27.6 5.4 -6.2 3.9 62 62 A L H 3X>S+ 0 0 12 -4,-1.4 5,-1.2 1,-0.2 4,-1.0 0.767 85.3 69.2 -63.0 -21.9 7.7 -6.4 0.8 63 63 A S H X>5S+ 0 0 49 -3,-1.9 4,-1.7 -4,-0.2 3,-1.5 0.987 106.1 34.3 -57.2 -65.2 10.3 -7.6 3.4 64 64 A M H 345S+ 0 0 123 -4,-0.4 -1,-0.2 1,-0.3 -2,-0.2 0.829 112.6 65.2 -58.4 -31.6 8.7 -11.0 4.1 65 65 A Q H 3<5S- 0 0 31 -4,-1.9 -1,-0.3 1,-0.1 -2,-0.2 0.724 140.7 -63.8 -64.5 -23.6 7.6 -10.9 0.4 66 66 A G H <<5S+ 0 0 73 -3,-1.5 2,-0.3 -4,-1.0 -3,-0.2 0.438 97.5 119.0 150.2 14.5 11.4 -11.2 -0.6 67 67 A A << + 0 0 26 -4,-1.7 -1,-0.2 -5,-1.2 3,-0.2 -0.851 24.4 166.0-116.7 148.2 13.2 -8.0 0.6 68 68 A V S S+ 0 0 131 -2,-0.3 2,-0.5 1,-0.2 3,-0.2 0.673 88.4 30.7-120.2 -44.1 16.1 -7.3 3.0 69 69 A D S S+ 0 0 104 1,-0.1 -1,-0.2 2,-0.1 0, 0.0 -0.895 82.2 104.5-120.5 90.4 16.8 -3.7 2.0 70 70 A I + 0 0 30 -2,-0.5 -1,-0.1 -3,-0.2 -8,-0.1 0.186 69.3 67.2-140.1 10.7 13.6 -2.0 0.9 71 71 A N S >> S+ 0 0 65 -3,-0.2 3,-2.2 3,-0.1 4,-1.7 0.860 106.0 27.3 -81.3 -80.3 12.9 0.1 4.0 72 72 A R H >> S+ 0 0 180 1,-0.3 3,-0.9 2,-0.2 4,-0.5 0.870 122.9 47.2 -55.4 -61.8 15.6 2.8 4.3 73 73 A L H 34 S+ 0 0 112 1,-0.2 -1,-0.3 2,-0.2 -2,-0.1 0.287 118.7 46.3 -54.6 0.7 16.6 3.2 0.6 74 74 A C H X4 S+ 0 0 7 -3,-2.2 3,-2.5 2,-0.0 -1,-0.2 0.585 85.6 86.9-117.5 -27.3 12.8 3.4 -0.2 75 75 A E H XX>S+ 0 0 77 -4,-1.7 5,-2.1 -3,-0.9 3,-1.5 0.694 71.2 80.6 -47.2 -21.6 11.9 5.9 2.7 76 76 A E T 3<5S+ 0 0 132 -4,-0.5 -1,-0.3 1,-0.3 -3,-0.1 0.575 99.4 39.7 -60.5 -6.9 12.7 8.5 0.1 77 77 A M T <45S+ 0 0 101 -3,-2.5 -1,-0.3 3,-0.0 -2,-0.2 0.356 128.1 31.4-120.4 -2.4 9.1 7.7 -1.2 78 78 A L T X>>S+ 0 0 20 -3,-1.5 4,-1.9 -4,-0.2 3,-1.2 0.618 129.3 29.8-117.2 -68.3 7.5 7.4 2.2 79 79 A D H 3X5S+ 0 0 80 -4,-0.9 4,-2.2 1,-0.3 -3,-0.2 0.907 127.1 46.3 -67.7 -35.9 9.2 9.7 4.7 80 80 A N H 34