==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=21-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER GROWTH FACTOR 01-APR-96 1YUG . COMPND 2 MOLECULE: TRANSFORMING GROWTH FACTOR ALPHA; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR F.J.MOY,G.T.MONTELIONE,H.A.SCHERAGA . 50 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4053.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 25 50.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 11 22.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 12.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 8.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A V 0 0 157 0, 0.0 2,-2.9 0, 0.0 3,-0.1 0.000 360.0 360.0 360.0 146.4 3.4 17.3 9.6 2 2 A V + 0 0 114 1,-0.2 2,-0.1 24,-0.0 24,-0.1 -0.214 360.0 105.8 71.9 -49.6 1.7 19.2 6.8 3 3 A S + 0 0 31 -2,-2.9 2,-0.3 23,-0.1 -1,-0.2 -0.392 48.0 159.1 -62.0 133.4 2.6 16.3 4.6 4 4 A H - 0 0 102 -2,-0.1 22,-1.0 -3,-0.1 21,-0.6 -0.965 31.2-125.1-153.3 163.5 -0.5 14.2 3.8 5 5 A F B +A 24 0A 111 -2,-0.3 19,-0.2 19,-0.2 3,-0.1 -0.702 37.0 140.8-113.2 164.5 -1.7 11.7 1.3 6 6 A N + 0 0 125 17,-0.8 2,-1.3 -2,-0.2 -1,-0.1 0.149 64.5 63.5-161.9 -63.0 -4.8 11.5 -1.0 7 7 A D + 0 0 98 1,-0.2 -1,-0.1 16,-0.2 15,-0.1 -0.693 56.9 173.0 -82.5 94.7 -4.0 10.1 -4.4 8 8 A a + 0 0 27 -2,-1.3 2,-0.3 13,-0.2 -1,-0.2 0.954 54.1 80.6 -68.5 -51.5 -2.9 6.6 -3.5 9 9 A P + 0 0 84 0, 0.0 14,-0.0 0, 0.0 12,-0.0 -0.411 40.5 132.9 -68.8 121.1 -2.7 5.3 -7.1 10 10 A D S S- 0 0 62 -2,-0.3 2,-0.7 0, 0.0 -2,-0.0 -0.052 86.6 -85.1-155.3 37.5 0.5 6.3 -8.9 11 11 A S S > S+ 0 0 101 1,-0.1 3,-1.7 0, 0.0 4,-0.0 -0.150 125.1 81.9 84.7 -40.2 1.7 3.1 -10.4 12 12 A H G > S+ 0 0 88 -2,-0.7 3,-1.4 1,-0.3 -1,-0.1 0.596 72.9 78.1 -71.2 -10.6 3.4 2.2 -7.2 13 13 A T G > S+ 0 0 42 1,-0.3 3,-1.4 2,-0.1 -1,-0.3 0.557 73.1 79.4 -73.4 -8.3 -0.0 1.0 -6.1 14 14 A Q G < S+ 0 0 132 -3,-1.7 -1,-0.3 1,-0.3 -2,-0.2 0.543 77.2 72.8 -74.2 -7.3 0.7 -2.1 -8.2 15 15 A F G < S+ 0 0 129 -3,-1.4 2,-0.4 1,-0.1 -1,-0.3 0.394 92.3 63.3 -85.6 1.9 2.7 -3.2 -5.2 16 16 A b < + 0 0 19 -3,-1.4 3,-0.2 1,-0.1 27,-0.1 -0.966 49.9 165.4-134.1 114.3 -0.5 -3.9 -3.3 17 17 A F S S+ 0 0 137 25,-1.1 2,-0.2 -2,-0.4 27,-0.1 0.849 83.8 10.8 -93.3 -43.5 -2.9 -6.5 -4.5 18 18 A H S S+ 0 0 69 24,-0.7 17,-0.7 25,-0.6 2,-0.3 -0.629 108.5 76.0-141.2 76.7 -5.1 -6.9 -1.4 19 19 A G E S- B 0 34A 19 15,-0.2 15,-0.3 -2,-0.2 -3,-0.1 -0.951 83.7 -67.2-174.0 160.5 -4.4 -4.2 1.1 20 20 A T E - B 0 33A 50 13,-1.8 13,-1.6 -2,-0.3 2,-0.5 -0.167 47.0-143.9 -54.5 148.7 -4.9 -0.6 2.0 21 21 A a E + B 0 32A 36 11,-0.2 2,-0.4 2,-0.0 11,-0.2 -0.982 24.9 165.9-125.4 126.0 -3.2 1.9 -0.3 22 22 A R E - B 0 31A 106 9,-1.6 9,-1.4 -2,-0.5 2,-0.6 -0.956 10.9-172.9-143.5 121.3 -1.6 5.2 0.9 23 23 A F E - B 0 30A 8 -2,-0.4 2,-1.0 7,-0.2 -17,-0.8 -0.944 22.2-139.0-119.1 111.5 0.8 7.3 -1.1 24 24 A L E > -AB 5 29A 42 5,-2.1 5,-1.2 -2,-0.6 -19,-0.2 -0.554 25.2-177.1 -68.1 102.5 2.4 10.3 0.6 25 25 A V T > 5S+ 0 0 48 -2,-1.0 3,-1.9 -21,-0.6 -1,-0.2 0.982 76.9 51.8 -70.8 -60.2 2.1 12.8 -2.2 26 26 A Q T 3 5S+ 0 0 100 -22,-1.0 -1,-0.2 1,-0.3 -21,-0.1 0.784 127.1 30.5 -50.2 -29.8 3.9 15.8 -0.7 27 27 A E T 3 5S- 0 0 103 -23,-0.2 -1,-0.3 2,-0.1 -3,-0.2 -0.514 101.2-136.0-123.9 63.1 6.6 13.3 0.0 28 28 A D T < 5 + 0 0 120 -3,-1.9 -3,-0.2 -5,-0.1 -2,-0.1 0.195 52.6 141.4 -24.8 95.9 6.1 11.0 -2.9 29 29 A K E < -B 24 0A 135 -5,-1.2 -5,-2.1 2,-0.1 -2,-0.1 -0.887 46.3-134.3-149.8 114.5 6.5 7.8 -0.9 30 30 A P E +B 23 0A 77 0, 0.0 2,-0.3 0, 0.0 -7,-0.2 -0.403 28.7 169.4 -68.7 145.4 4.4 4.6 -1.4 31 31 A A E -B 22 0A 57 -9,-1.4 -9,-1.6 -23,-0.1 2,-0.3 -0.811 6.5-179.1-161.6 114.8 3.0 2.9 1.7 32 32 A b E -B 21 0A 57 -2,-0.3 2,-0.4 -11,-0.2 -11,-0.2 -0.848 12.3-150.8-117.5 152.2 0.5 0.1 1.8 33 33 A V E -B 20 0A 63 -13,-1.6 -13,-1.8 -2,-0.3 -2,-0.0 -0.979 20.9-118.5-125.7 138.1 -1.0 -1.7 4.7 34 34 A c E -B 19 0A 54 -2,-0.4 -15,-0.2 -15,-0.3 9,-0.1 -0.323 18.0-148.4 -72.6 155.6 -2.3 -5.3 4.8 35 35 A H - 0 0 109 -17,-0.7 2,-0.3 1,-0.2 -1,-0.1 0.906 43.9 -73.5 -88.0 -86.4 -5.9 -6.0 5.5 36 36 A S S S+ 0 0 99 3,-0.1 -1,-0.2 1,-0.0 3,-0.1 -0.947 99.9 35.5-174.5 156.1 -6.5 -9.2 7.3 37 37 A G S S+ 0 0 56 -2,-0.3 2,-0.2 1,-0.2 -1,-0.0 0.844 96.7 103.7 59.8 36.0 -6.5 -13.0 6.8 38 38 A Y - 0 0 60 8,-0.2 2,-0.3 2,-0.1 8,-0.2 -0.802 54.5-147.6-137.5 177.6 -3.6 -12.7 4.4 39 39 A V B +C 45 0B 40 6,-2.3 6,-0.7 -2,-0.2 5,-0.2 -0.840 49.2 52.8-141.1 176.3 0.2 -13.2 4.2 40 40 A G S S- 0 0 61 -2,-0.3 -2,-0.1 9,-0.2 -6,-0.1 -0.045 82.7 -89.0 81.0 172.3 3.2 -11.8 2.5 41 41 A A S S+ 0 0 106 1,-0.1 -1,-0.1 2,-0.0 -7,-0.0 0.852 128.4 40.0 -86.2 -40.5 4.4 -8.2 2.4 42 42 A R S S- 0 0 101 -26,-0.1 -25,-1.1 -8,-0.0 -24,-0.7 0.648 107.0-127.9 -82.6 -17.3 2.4 -7.2 -0.7 43 43 A c + 0 0 5 -4,-0.2 -25,-0.6 -27,-0.1 -3,-0.2 0.947 63.6 138.4 68.9 50.2 -0.5 -9.2 0.5 44 44 A E + 0 0 97 -5,-0.2 2,-0.3 -27,-0.1 -4,-0.1 0.719 57.6 60.7 -93.2 -27.6 -0.8 -11.2 -2.7 45 45 A H B S-C 39 0B 97 -6,-0.7 -6,-2.3 4,-0.1 2,-0.7 -0.786 72.7-143.8-106.1 146.6 -1.5 -14.5 -1.0 46 46 A A - 0 0 34 -2,-0.3 -8,-0.2 1,-0.3 -9,-0.1 -0.901 58.8 -57.7-114.3 102.9 -4.4 -15.3 1.3 47 47 A D S S+ 0 0 98 -2,-0.7 -1,-0.3 1,-0.1 -8,-0.2 0.189 109.2 82.0 49.2 178.6 -3.4 -17.6 4.1 48 48 A L S S+ 0 0 156 -3,-0.1 -1,-0.1 -10,-0.1 -2,-0.1 0.766 80.0 88.0 61.4 25.4 -1.9 -21.0 3.3 49 49 A L 0 0 87 -4,-0.1 -9,-0.2 1,-0.0 -2,-0.1 -0.254 360.0 360.0-147.5 49.4 1.3 -19.1 2.9 50 50 A A 0 0 144 -11,-0.1 -10,-0.1 -10,-0.0 -1,-0.0 0.905 360.0 360.0 -69.5 360.0 2.9 -19.1 6.3