==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=6-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 06-APR-07 2YUM . COMPND 2 MOLECULE: ZINC FINGER ZZ-TYPE-CONTAINING PROTEIN 3; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR H.ABE,N.TOCHIO,K.MIYAMOTO,K.SAITO,S.KOSHIBA,M.INOUE, . 75 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 6344.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 44 58.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 10.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 30 40.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 118 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -98.8 5.4 -17.3 9.8 2 2 A S + 0 0 107 1,-0.1 0, 0.0 3,-0.0 0, 0.0 0.892 360.0 178.0 -38.6 -57.3 6.0 -13.6 9.7 3 3 A S - 0 0 121 2,-0.0 -1,-0.1 0, 0.0 0, 0.0 0.879 65.5 -51.1 50.3 41.9 3.2 -13.0 12.2 4 4 A G - 0 0 52 9,-0.0 2,-0.3 2,-0.0 0, 0.0 0.164 66.4-143.5 79.8 158.1 4.0 -9.3 12.1 5 5 A S - 0 0 119 2,-0.0 2,-0.1 1,-0.0 -2,-0.0 -0.913 16.5 -95.0-149.7 174.3 7.4 -7.5 12.5 6 6 A S + 0 0 113 -2,-0.3 2,-0.2 0, 0.0 -2,-0.0 -0.278 36.2 173.8 -88.1 177.1 9.0 -4.4 13.9 7 7 A G - 0 0 47 1,-0.1 3,-0.0 3,-0.1 -2,-0.0 -0.761 34.9-140.6 175.5 136.3 9.9 -1.2 12.2 8 8 A N S S- 0 0 158 -2,-0.2 -1,-0.1 1,-0.2 0, 0.0 0.958 107.2 -0.3 -68.4 -52.6 11.2 2.3 12.8 9 9 A Q S S+ 0 0 178 2,-0.0 2,-0.2 0, 0.0 -1,-0.2 -0.188 101.9 128.6-131.9 40.8 8.8 4.1 10.5 10 10 A L - 0 0 115 1,-0.2 -3,-0.1 -3,-0.0 0, 0.0 -0.630 65.4 -85.4 -97.6 157.1 6.8 1.2 9.0 11 11 A W - 0 0 20 -2,-0.2 2,-0.4 1,-0.1 -1,-0.2 0.123 46.2-114.9 -49.0 172.4 3.0 1.0 8.9 12 12 A T >> - 0 0 53 1,-0.1 4,-2.6 0, 0.0 3,-1.2 -0.932 19.1-113.3-120.3 142.2 1.1 -0.4 11.8 13 13 A V H 3> S+ 0 0 84 -2,-0.4 4,-2.4 1,-0.3 5,-0.4 0.831 117.9 60.2 -34.5 -46.3 -1.0 -3.6 12.1 14 14 A E H 3> S+ 0 0 140 1,-0.2 4,-1.3 2,-0.2 -1,-0.3 0.937 115.9 30.5 -50.3 -54.5 -4.0 -1.3 12.5 15 15 A E H <> S+ 0 0 20 -3,-1.2 4,-2.9 2,-0.2 5,-0.3 0.955 112.8 63.5 -71.2 -52.3 -3.4 0.3 9.1 16 16 A Q H X S+ 0 0 71 -4,-2.6 4,-2.2 1,-0.3 -2,-0.2 0.886 109.7 40.2 -36.4 -59.9 -1.8 -2.7 7.4 17 17 A K H X S+ 0 0 124 -4,-2.4 4,-1.7 -5,-0.2 -1,-0.3 0.894 114.4 55.4 -59.7 -41.5 -5.1 -4.7 7.8 18 18 A K H X S+ 0 0 93 -4,-1.3 4,-2.5 -5,-0.4 3,-0.5 0.970 108.9 45.0 -55.9 -59.4 -7.1 -1.6 6.9 19 19 A L H X S+ 0 0 0 -4,-2.9 4,-3.2 1,-0.2 5,-0.2 0.950 106.0 60.0 -49.7 -59.0 -5.3 -1.0 3.6 20 20 A E H X S+ 0 0 127 -4,-2.2 4,-1.0 -5,-0.3 -1,-0.2 0.855 111.8 41.8 -36.9 -48.6 -5.5 -4.7 2.6 21 21 A Q H >X S+ 0 0 131 -4,-1.7 4,-1.8 -3,-0.5 3,-1.4 0.982 111.3 52.2 -66.1 -59.2 -9.3 -4.5 2.8 22 22 A L H 3X S+ 0 0 15 -4,-2.5 4,-3.0 1,-0.3 -2,-0.2 0.842 101.5 65.3 -45.8 -38.1 -9.6 -1.1 1.1 23 23 A L H 3< S+ 0 0 18 -4,-3.2 -1,-0.3 -5,-0.2 -2,-0.2 0.910 104.8 43.0 -52.7 -46.4 -7.5 -2.5 -1.7 24 24 A I H << S+ 0 0 132 -3,-1.4 -1,-0.2 -4,-1.0 -2,-0.2 0.940 114.3 49.0 -66.3 -48.8 -10.3 -5.0 -2.6 25 25 A K H < S+ 0 0 130 -4,-1.8 -2,-0.2 1,-0.2 -1,-0.2 0.849 110.8 56.4 -59.7 -35.0 -13.1 -2.4 -2.2 26 26 A Y S < S- 0 0 41 -4,-3.0 -1,-0.2 -5,-0.3 13,-0.0 -0.795 82.2-165.3-104.6 93.1 -11.2 -0.0 -4.4 27 27 A P - 0 0 76 0, 0.0 -3,-0.1 0, 0.0 -2,-0.0 -0.120 29.6 -81.4 -69.7 170.0 -10.5 -1.8 -7.7 28 28 A P + 0 0 102 0, 0.0 2,-0.3 0, 0.0 4,-0.1 -0.201 50.2 174.8 -69.7 163.5 -7.9 -0.7 -10.4 29 29 A E - 0 0 54 1,-0.1 6,-0.1 0, 0.0 5,-0.0 -0.928 48.4 -81.2-157.5 178.5 -8.6 2.0 -13.0 30 30 A E S S+ 0 0 188 -2,-0.3 2,-0.6 1,-0.2 -1,-0.1 0.915 118.3 49.1 -55.2 -46.3 -7.1 4.0 -15.8 31 31 A V > - 0 0 55 1,-0.1 4,-0.9 -3,-0.0 -1,-0.2 -0.873 62.2-172.3-102.5 118.6 -5.6 6.4 -13.3 32 32 A E H > S+ 0 0 105 -2,-0.6 4,-1.8 2,-0.2 5,-0.2 0.774 84.6 61.4 -76.4 -27.4 -3.6 4.9 -10.4 33 33 A S H > S+ 0 0 87 1,-0.2 4,-2.1 2,-0.2 3,-0.2 0.973 102.6 47.2 -62.9 -56.9 -3.3 8.3 -8.7 34 34 A R H > S+ 0 0 141 1,-0.2 4,-1.7 2,-0.2 -1,-0.2 0.837 108.1 60.4 -54.3 -34.3 -7.0 8.9 -8.2 35 35 A R H X S+ 0 0 26 -4,-0.9 4,-1.7 1,-0.2 3,-0.5 0.963 105.8 43.6 -59.0 -55.5 -7.2 5.3 -6.9 36 36 A W H X S+ 0 0 12 -4,-1.8 4,-3.1 1,-0.2 5,-0.3 0.873 107.5 61.9 -58.5 -38.6 -4.8 5.9 -4.0 37 37 A Q H X S+ 0 0 119 -4,-2.1 4,-2.0 1,-0.2 -1,-0.2 0.892 104.3 48.7 -55.0 -42.4 -6.5 9.2 -3.3 38 38 A K H X S+ 0 0 51 -4,-1.7 4,-1.4 -3,-0.5 -2,-0.2 0.973 114.1 43.4 -62.8 -56.7 -9.8 7.4 -2.6 39 39 A I H >X S+ 0 0 0 -4,-1.7 4,-2.0 1,-0.2 3,-0.8 0.947 112.5 53.0 -54.2 -53.9 -8.3 4.8 -0.2 40 40 A A H 3X S+ 0 0 4 -4,-3.1 4,-2.6 1,-0.3 -1,-0.2 0.904 102.5 59.4 -48.7 -48.0 -6.1 7.4 1.6 41 41 A D H 3< S+ 0 0 128 -4,-2.0 -1,-0.3 -5,-0.3 -2,-0.2 0.885 106.8 47.7 -49.3 -43.8 -9.2 9.5 2.2 42 42 A E H << S+ 0 0 95 -4,-1.4 -1,-0.2 -3,-0.8 -2,-0.2 0.938 108.8 52.9 -64.5 -48.5 -10.8 6.6 4.1 43 43 A L H < S- 0 0 23 -4,-2.0 2,-0.7 1,-0.2 -2,-0.2 0.912 83.1-166.3 -53.8 -46.3 -7.6 5.9 6.2 44 44 A G S < S+ 0 0 64 -4,-2.6 -1,-0.2 2,-0.3 -3,-0.1 -0.149 78.1 56.1 85.2 -42.0 -7.6 9.6 7.3 45 45 A N S S+ 0 0 125 -2,-0.7 -1,-0.2 -5,-0.1 -4,-0.1 0.907 100.1 59.7 -86.8 -50.1 -4.0 9.2 8.6 46 46 A R S S- 0 0 48 -6,-0.2 2,-0.3 -7,-0.1 -2,-0.3 -0.241 76.1-137.8 -75.3 167.4 -2.3 8.0 5.5 47 47 A T > - 0 0 72 1,-0.1 4,-3.1 -4,-0.1 5,-0.3 -0.893 28.9 -98.5-127.9 158.0 -2.1 9.9 2.2 48 48 A A H > S+ 0 0 22 -2,-0.3 4,-2.6 1,-0.2 5,-0.1 0.874 125.0 43.9 -36.2 -56.0 -2.5 9.0 -1.5 49 49 A K H >> S+ 0 0 159 2,-0.2 4,-2.2 1,-0.2 3,-0.5 0.985 111.3 50.3 -56.0 -66.1 1.3 8.9 -1.8 50 50 A Q H 3> S+ 0 0 109 1,-0.3 4,-1.6 2,-0.2 -1,-0.2 0.841 115.1 47.1 -41.1 -41.1 2.0 7.0 1.4 51 51 A V H 3X S+ 0 0 0 -4,-3.1 4,-2.4 2,-0.2 -1,-0.3 0.892 108.0 55.4 -70.4 -40.9 -0.5 4.5 0.2 52 52 A A H X>S+ 0 0 11 -4,-2.4 4,-2.2 1,-0.2 3,-1.9 0.877 100.7 59.4 -53.3 -40.8 1.1 -0.8 -2.6 56 56 A Q H 3X>S+ 0 0 95 -4,-1.5 4,-1.5 -3,-0.3 5,-0.8 0.932 108.0 43.1 -54.6 -50.3 4.4 -1.3 -4.4 57 57 A K H 3<5S+ 0 0 106 -4,-1.4 -1,-0.3 -3,-0.3 -2,-0.2 0.153 114.8 55.8 -83.2 20.4 5.8 -3.4 -1.5 58 58 A Y H <45S+ 0 0 51 -3,-1.9 -2,-0.2 -5,-0.1 -1,-0.2 0.667 122.1 16.8-118.3 -37.4 2.5 -5.2 -1.3 59 59 A F H ><5S+ 0 0 104 -4,-2.2 3,-0.6 -3,-0.2 4,-0.5 0.782 129.7 45.7-105.1 -43.1 1.9 -6.5 -4.8 60 60 A I G ><