==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=21-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER STRUCTURAL PROTEIN 18-FEB-05 1YWJ . COMPND 2 MOLECULE: FORMIN-BINDING PROTEIN 3; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR J.R.PIRES,C.PARTHIER,R.AIDO-MACHADO,U.WIEDEMANN,L.OTTE, . 28 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2556.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 21 75.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 11 39.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 21.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 7.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 2 7.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 15 A S 0 0 167 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -53.0 -10.7 -3.3 -3.7 2 16 A M + 0 0 75 26,-0.2 16,-2.3 16,-0.1 17,-0.5 0.581 360.0 73.1 -93.9 -13.8 -11.1 -0.9 -0.8 3 17 A W E -A 17 0A 53 14,-0.3 2,-0.4 25,-0.1 14,-0.3 -0.787 60.6-162.7-105.7 147.5 -7.5 0.3 -0.9 4 18 A T E -A 16 0A 53 12,-1.8 12,-2.3 -2,-0.3 2,-0.3 -0.956 12.3-161.2-130.0 112.7 -5.9 2.6 -3.5 5 19 A E E +A 15 0A 89 -2,-0.4 2,-0.3 10,-0.3 10,-0.2 -0.729 15.9 162.3-101.8 145.2 -2.1 2.6 -3.7 6 20 A H E -A 14 0A 106 8,-1.7 8,-2.2 -2,-0.3 6,-0.1 -0.981 44.9 -76.2-152.3 154.7 0.1 5.3 -5.3 7 21 A K E +A 13 0A 178 -2,-0.3 6,-0.3 6,-0.3 3,-0.1 -0.023 56.8 156.7 -49.5 157.0 3.8 6.3 -5.2 8 22 A S E >> -A 12 0A 39 4,-1.7 4,-2.0 1,-0.2 3,-1.2 -0.963 42.4 -25.8-170.4 174.6 5.1 8.1 -2.1 9 23 A P G >4 S+ 0 0 102 0, 0.0 3,-0.7 0, 0.0 -1,-0.2 0.203 120.6 32.5 -30.6 151.3 8.2 9.0 0.0 10 24 A D G 34 S- 0 0 140 1,-0.2 3,-0.1 -3,-0.1 -3,-0.0 0.370 127.7 -84.4 74.2 -4.8 11.1 6.6 -0.1 11 25 A G G <4 S+ 0 0 77 -3,-1.2 2,-0.3 1,-0.3 -1,-0.2 0.928 97.3 113.9 73.5 47.2 10.1 5.9 -3.7 12 26 A R E << -A 8 0A 112 -4,-2.0 -4,-1.7 -3,-0.7 2,-0.5 -0.920 66.0-107.5-141.8 165.7 7.4 3.3 -2.9 13 27 A T E -A 7 0A 54 -2,-0.3 2,-0.3 -6,-0.3 -6,-0.3 -0.853 27.2-158.9-104.6 130.3 3.7 3.0 -3.2 14 28 A Y E -A 6 0A 60 -8,-2.2 -8,-1.7 -2,-0.5 2,-0.6 -0.754 17.0-125.0-103.6 153.1 1.4 3.0 -0.2 15 29 A Y E -AB 5 24A 70 9,-2.3 9,-2.0 -2,-0.3 2,-0.7 -0.863 19.1-160.1-102.7 121.1 -2.1 1.7 -0.0 16 30 A Y E -AB 4 23A 82 -12,-2.3 -12,-1.8 -2,-0.6 2,-0.8 -0.875 12.6-142.3-104.4 108.2 -4.8 4.1 1.1 17 31 A N E >> -AB 3 22A 6 5,-2.6 4,-2.5 -2,-0.7 5,-0.7 -0.585 11.6-160.7 -70.0 108.1 -8.0 2.4 2.4 18 32 A T T 45S+ 0 0 61 -16,-2.3 -1,-0.2 -2,-0.8 -15,-0.1 0.939 86.9 33.9 -55.8 -53.9 -10.7 4.7 1.0 19 33 A E T 45S+ 0 0 144 -17,-0.5 -1,-0.1 1,-0.2 -2,-0.1 0.990 129.0 34.3 -67.1 -62.9 -13.4 3.5 3.5 20 34 A T T 45S- 0 0 85 -18,-0.1 -2,-0.2 2,-0.1 -1,-0.2 0.845 101.7-132.9 -61.1 -37.5 -11.2 2.8 6.5 21 35 A K T <5 + 0 0 150 -4,-2.5 2,-0.7 1,-0.2 -3,-0.2 0.902 49.5 153.8 80.2 48.1 -8.9 5.7 5.7 22 36 A Q E < -B 17 0A 84 -5,-0.7 -5,-2.6 2,-0.1 2,-0.7 -0.884 20.5-179.0-115.7 102.9 -5.8 3.7 6.2 23 37 A S E +B 16 0A 60 -2,-0.7 2,-0.3 -7,-0.3 -7,-0.3 -0.873 33.7 109.3-103.9 108.1 -2.8 4.9 4.2 24 38 A T E S-B 15 0A 42 -9,-2.0 -9,-2.3 -2,-0.7 2,-0.9 -0.977 70.6 -92.9-165.7 169.5 0.3 2.7 4.8 25 39 A W S S+ 0 0 83 -2,-0.3 2,-0.3 -11,-0.2 -11,-0.1 -0.822 75.3 102.8 -99.0 102.1 2.6 0.1 3.3 26 40 A E S S- 0 0 102 -2,-0.9 -2,-0.1 -11,-0.0 -11,-0.1 -0.979 80.9 -67.0-167.9 165.6 1.3 -3.3 4.2 27 41 A K 0 0 193 -2,-0.3 -2,-0.0 1,-0.1 0, 0.0 -0.513 360.0 360.0 -65.5 107.1 -0.6 -6.3 3.0 28 42 A P 0 0 89 0, 0.0 -26,-0.2 0, 0.0 -1,-0.1 -0.106 360.0 360.0 -79.8 360.0 -4.2 -5.0 2.4