==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=21-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DE NOVO PROTEIN 25-FEB-05 1YYX . COMPND 2 MOLECULE: REDESIGNED APO-CYTOCHROME B562; . SOURCE 2 SYNTHETIC: YES; . AUTHOR H.FENG,N.VU,Y.BAI,BERKELEY STRUCTURAL GENOMICS CENTER (BSGC) . 106 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 6651.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 102 96.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 4.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 24 22.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 69 65.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 3 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 119 0, 0.0 5,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 65.1 -16.9 8.5 1.6 2 2 A D >> - 0 0 109 3,-0.1 3,-2.8 1,-0.1 4,-0.9 0.108 360.0 -53.1 -81.0-159.1 -13.8 10.7 1.8 3 3 A L H 3> S+ 0 0 58 1,-0.3 4,-1.5 2,-0.2 3,-0.2 0.843 133.0 69.7 -48.4 -34.2 -10.2 9.6 2.3 4 4 A E H 3> S+ 0 0 144 1,-0.2 4,-1.0 2,-0.2 -1,-0.3 0.827 95.6 54.6 -57.3 -28.3 -11.5 7.6 5.3 5 5 A D H X> S+ 0 0 49 -3,-2.8 4,-2.2 2,-0.2 3,-0.5 0.920 95.9 61.5 -75.1 -40.9 -13.3 5.3 2.9 6 6 A N H 3X S+ 0 0 12 -4,-0.9 4,-2.1 1,-0.3 5,-0.2 0.941 105.0 52.4 -49.9 -40.6 -10.2 4.4 0.8 7 7 A W H 3X S+ 0 0 118 -4,-1.5 4,-2.0 1,-0.2 -1,-0.3 0.901 103.8 57.2 -60.2 -39.6 -9.0 3.0 4.2 8 8 A E H < S+ 0 0 49 -4,-2.1 3,-0.8 -3,-0.4 5,-0.2 0.984 114.8 47.9 -67.5 -56.0 -10.7 -11.4 4.1 17 17 A I H >< S+ 0 0 2 -4,-1.8 3,-1.3 1,-0.3 4,-0.2 0.957 114.4 50.1 -50.3 -44.3 -7.0 -12.6 3.8 18 18 A E H 3< S+ 0 0 63 -4,-2.2 -1,-0.3 -5,-0.4 -2,-0.2 0.859 129.0 23.0 -59.6 -33.0 -7.1 -12.8 7.6 19 19 A K T << S+ 0 0 116 -4,-1.4 -1,-0.3 -3,-0.8 -2,-0.3 -0.124 80.4 129.2-125.1 36.2 -10.3 -14.9 7.2 20 20 A A < > - 0 0 0 -3,-1.3 2,-2.0 -4,-0.2 5,-0.5 0.732 51.1-155.7 -64.5 -19.1 -10.0 -16.1 3.6 21 21 A D T 5S+ 0 0 116 -4,-0.2 2,-0.3 -5,-0.2 -1,-0.2 0.101 74.9 28.8 66.4 -32.9 -10.7 -19.6 4.9 22 22 A N T >>5S- 0 0 92 -2,-2.0 4,-1.1 62,-0.1 3,-0.7 -0.997 92.6-104.5-153.0 152.1 -8.8 -20.9 1.9 23 23 A A H 3>5S+ 0 0 25 -2,-0.3 4,-1.6 1,-0.2 5,-0.2 0.715 115.0 72.2 -51.8 -14.8 -6.0 -19.6 -0.4 24 24 A A H 3>5S+ 0 0 62 1,-0.2 4,-1.4 2,-0.2 3,-0.3 0.986 96.8 41.6 -68.0 -57.6 -8.9 -18.9 -2.8 25 25 A Q H <>X S+ 0 0 5 -4,-2.2 4,-2.4 1,-0.3 3,-0.7 0.927 113.3 51.3 -49.9 -49.8 -8.8 -9.8 -1.4 30 30 A L H 3X S+ 0 0 3 -4,-2.4 4,-2.1 1,-0.3 -1,-0.3 0.898 104.5 57.6 -58.9 -35.7 -5.3 -9.1 -2.8 31 31 A T H 3X S+ 0 0 73 -4,-1.9 4,-1.2 -3,-0.4 -1,-0.3 0.872 106.9 48.9 -64.2 -30.4 -6.8 -8.4 -6.2 32 32 A K H X S+ 0 0 6 -4,-4.0 4,-0.9 -5,-0.4 3,-0.8 0.998 111.3 27.5 -66.8 -73.9 -3.6 0.1 -3.9 38 38 A L H 3X S+ 0 0 58 -4,-1.6 4,-0.9 1,-0.3 3,-0.4 0.826 114.4 67.5 -62.6 -23.9 -2.9 2.4 -6.8 39 39 A D H >< S+ 0 0 87 -4,-1.6 3,-1.4 -5,-0.4 -1,-0.3 0.956 96.6 53.9 -61.2 -39.6 -6.2 4.1 -6.0 40 40 A A H X< S+ 0 0 5 -4,-1.4 3,-2.8 -3,-0.8 -1,-0.3 0.836 89.0 78.8 -61.9 -25.8 -4.4 5.3 -2.9 41 41 A Q H 3< S+ 0 0 2 -4,-0.9 -1,-0.3 -3,-0.4 3,-0.2 0.924 112.2 23.8 -47.1 -40.9 -1.8 6.6 -5.3 42 42 A K T << S+ 0 0 139 -3,-1.4 -1,-0.3 -4,-0.9 -2,-0.2 0.036 133.2 43.9-111.8 25.6 -4.4 9.4 -5.7 43 43 A A S < S+ 0 0 17 -3,-2.8 -1,-0.2 -5,-0.1 -2,-0.2 -0.288 74.6 132.4-166.1 68.0 -6.1 8.9 -2.3 44 44 A T S > S- 0 0 0 -3,-0.2 3,-4.5 1,-0.0 4,-0.1 -0.889 72.8 -91.3-123.6 154.5 -3.6 8.4 0.6 45 45 A P T 3 S+ 0 0 52 0, 0.0 59,-0.1 0, 0.0 -42,-0.1 0.771 131.7 36.6 -33.1 -40.3 -3.4 10.0 4.1 46 46 A P T 3 S- 0 0 16 0, 0.0 58,-0.0 0, 0.0 60,-0.0 0.392 94.0-144.4 -96.8 2.4 -1.1 12.7 2.7 47 47 A K < - 0 0 103 -3,-4.5 2,-1.1 1,-0.1 -6,-0.0 0.734 29.4-125.7 42.0 19.6 -2.9 12.9 -0.7 48 48 A L S S+ 0 0 45 2,-0.1 2,-1.0 -4,-0.1 -1,-0.1 -0.125 101.4 65.3 43.2 -84.2 0.7 13.5 -2.0 49 49 A E + 0 0 55 -2,-1.1 -1,-0.1 1,-0.2 9,-0.0 -0.444 62.3 171.5 -63.5 102.4 -0.4 16.7 -3.8 50 50 A D S S- 0 0 92 -2,-1.0 -1,-0.2 0, 0.0 -2,-0.1 0.513 81.7 -24.4 -90.9 -3.8 -1.4 18.8 -0.7 51 51 A K S S- 0 0 164 -3,-0.1 -2,-0.1 0, 0.0 -3,-0.0 -0.028 117.5 -45.8-165.7 -74.5 -1.8 21.8 -2.9 52 52 A S + 0 0 106 3,-0.0 -3,-0.1 0, 0.0 0, 0.0 -0.103 59.4 163.1-175.4 61.8 0.2 21.8 -6.2 53 53 A P S S- 0 0 54 0, 0.0 -4,-0.0 0, 0.0 -5,-0.0 0.979 78.9 -52.6 -51.7 -69.2 3.8 20.7 -5.8 54 54 A D - 0 0 94 0, 0.0 -5,-0.0 0, 0.0 0, 0.0 0.473 56.8-139.9-138.7 -58.8 4.6 19.9 -9.5 55 55 A S S S+ 0 0 91 0, 0.0 3,-0.5 0, 0.0 4,-0.3 -0.313 91.5 59.8 115.2 -43.7 1.9 17.5 -11.0 56 56 A P S >> S+ 0 0 92 0, 0.0 3,-0.9 0, 0.0 4,-0.8 0.897 92.9 65.6 -80.0 -39.7 4.1 15.1 -13.1 57 57 A E H 3> S+ 0 0 125 1,-0.2 4,-1.4 2,-0.2 0, 0.0 0.542 83.1 87.5 -58.8 -1.0 6.2 14.0 -10.2 58 58 A M H >> S+ 0 0 52 -3,-0.5 4,-1.3 2,-0.2 3,-1.2 0.992 83.8 47.3 -67.2 -57.8 3.0 12.4 -9.0 59 59 A K H X> S+ 0 0 121 -3,-0.9 4,-1.1 -4,-0.3 3,-0.7 0.912 106.0 61.9 -52.2 -35.0 3.3 9.1 -10.9 60 60 A D H >X S+ 0 0 101 -4,-0.8 3,-1.3 1,-0.3 4,-1.0 0.937 94.6 60.3 -57.1 -37.8 6.8 9.0 -9.5 61 61 A F H XX S+ 0 0 32 -4,-1.4 4,-2.0 -3,-1.2 3,-1.0 0.923 94.9 63.2 -55.5 -34.7 5.1 9.0 -6.1 62 62 A R H X S+ 0 0 11 -4,-1.2 3,-2.1 1,-0.2 4,-1.1 0.999 106.8 39.6 -61.2 -61.7 1.4 -7.1 -1.6 73 73 A D H 3X S+ 0 0 59 -4,-1.5 4,-2.0 1,-0.3 3,-0.4 0.867 106.8 65.8 -56.4 -32.8 0.6 -8.6 -5.0 74 74 A D H 3X S+ 0 0 65 -4,-1.5 4,-2.2 1,-0.3 -1,-0.3 0.849 96.1 56.8 -62.3 -21.8 3.6 -10.9 -4.6 75 75 A A H X>S+ 0 0 39 -4,-2.2 3,-2.5 1,-0.2 5,-0.7 0.975 105.7 57.7 -63.9 -55.7 2.5 -16.9 -3.1 79 79 A A H ><5S+ 0 0 2 -4,-3.5 3,-1.9 1,-0.3 -1,-0.2 0.879 102.2 57.4 -46.0 -37.1 -1.2 -17.7 -2.2 80 80 A N H 3<5S+ 0 0 77 -4,-1.5 -1,-0.3 1,-0.3 -2,-0.2 0.857 104.1 52.4 -64.5 -27.7 -1.4 -19.3 -5.6 81 81 A E H <<5S- 0 0 140 -3,-2.5 -1,-0.3 -4,-0.8 -2,-0.2 0.430 135.3 -93.8 -86.1 4.7 1.5 -21.4 -4.5 82 82 A G T <<5S+ 0 0 49 -3,-1.9 2,-0.9 -4,-0.5 -3,-0.2 0.864 72.8 151.7 88.6 40.2 -0.6 -22.3 -1.4 83 83 A K >< + 0 0 59 -5,-0.7 4,-2.1 1,-0.2 5,-0.4 -0.501 8.2 148.7-101.1 66.7 0.7 -19.7 1.1 84 84 A V H > S+ 0 0 51 -2,-0.9 4,-1.6 2,-0.2 -1,-0.2 0.983 79.6 27.3 -62.8 -58.5 -2.4 -19.3 3.3 85 85 A K H > S+ 0 0 163 -3,-0.2 4,-2.9 2,-0.2 5,-0.2 0.943 124.9 49.6 -71.1 -47.2 -0.6 -18.5 6.6 86 86 A E H > S+ 0 0 106 2,-0.2 4,-2.4 1,-0.2 5,-0.2 0.942 112.3 47.2 -59.3 -47.0 2.5 -16.9 4.9 87 87 A A H X S+ 0 0 2 -4,-2.1 4,-0.9 1,-0.2 -1,-0.2 0.922 112.4 51.0 -63.3 -38.4 0.3 -14.7 2.7 88 88 A Q H >X S+ 0 0 41 -4,-1.6 4,-1.3 -5,-0.4 3,-0.7 0.931 107.9 52.3 -64.9 -41.0 -1.8 -13.7 5.7 89 89 A A H 3X S+ 0 0 48 -4,-2.9 4,-0.8 1,-0.3 3,-0.4 0.944 104.2 55.9 -60.6 -42.2 1.4 -12.9 7.6 90 90 A A H 3X S+ 0 0 38 -4,-2.4 4,-1.2 1,-0.2 3,-0.3 0.801 98.7 66.4 -60.5 -21.7 2.4 -10.7 4.7 91 91 A A H XX S+ 0 0 4 -4,-0.9 4,-1.8 -3,-0.7 3,-0.9 0.966 95.1 51.7 -65.1 -50.1 -0.9 -9.0 5.4 92 92 A E H 3X S+ 0 0 105 -4,-1.3 4,-2.0 -3,-0.4 5,-0.3 0.717 101.9 65.8 -61.7 -12.8 0.1 -7.6 8.8 93 93 A Q H 3X S+ 0 0 52 -4,-0.8 4,-2.0 -3,-0.3 -1,-0.3 0.921 101.2 46.4 -74.9 -39.9 3.1 -6.2 6.8 94 94 A L H S+ 0 0 81 -4,-2.0 4,-4.3 1,-0.2 5,-0.5 0.800 105.4 75.8 -65.4 -25.5 2.2 -1.9 10.0 97 97 A T H X5S+ 0 0 7 -4,-2.0 4,-2.4 -5,-0.3 7,-0.3 0.974 102.6 38.2 -49.6 -58.4 3.8 -0.7 6.7 98 98 A I H <5S+ 0 0 30 -4,-1.5 6,-4.7 -3,-0.3 4,-0.2 0.971 121.6 43.9 -57.6 -55.7 1.7 2.5 6.8 99 99 A R H >X5S+ 0 0 142 -4,-1.5 3,-2.1 4,-0.3 4,-0.8 0.953 115.6 47.3 -58.0 -49.5 2.0 2.9 10.6 100 100 A A H 3<5S+ 0 0 70 -4,-4.3 -1,-0.2 1,-0.3 -2,-0.2 0.898 107.3 56.9 -60.5 -35.9 5.7 2.1 10.7 101 101 A Y T 3<< S- 0 0 82 -4,-0.8 3,-1.9 2,-0.1 2,-1.1 0.969 112.8 -69.4 47.4 54.8 0.9 6.5 9.3 104 104 A K T 3 S- 0 0 2 -6,-4.7 -1,-0.1 -7,-0.3 -60,-0.0 -0.469 101.1 -38.0 63.2 -95.0 2.2 6.1 5.7 105 105 A Y T 3 0 0 106 -2,-1.1 -1,-0.2 0, 0.0 -2,-0.1 0.189 360.0 360.0-145.7 20.6 3.3 9.7 5.0 106 106 A G < 0 0 86 -3,-1.9 -59,-0.0 -4,-0.5 0, 0.0 -0.583 360.0 360.0 -79.7 360.0 0.7 11.9 6.7