==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=6-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 06-JUN-07 2Z3S . COMPND 2 MOLECULE: AGTX2-MTX; . SOURCE 2 SYNTHETIC: YES; . AUTHOR C.PIMENTEL,S.M'BARREK,V.VISAN,S.GRISSMER,J.M.SABATIER, . 39 1 4 4 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2902.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 34 87.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 9 23.1 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 12 30.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 7.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 9 23.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 111 0, 0.0 36,-0.0 0, 0.0 34,-0.0 0.000 360.0 360.0 360.0 134.0 -0.2 3.0 -11.5 2 2 A V - 0 0 54 2,-0.1 2,-0.7 1,-0.1 34,-0.1 -0.708 360.0-130.8 -90.7 140.6 -1.7 4.5 -8.4 3 3 A P S S+ 0 0 123 0, 0.0 2,-0.6 0, 0.0 -1,-0.1 -0.068 76.7 108.8 -83.4 36.5 0.2 7.2 -6.6 4 4 A I + 0 0 33 -2,-0.7 32,-1.4 32,-0.2 2,-0.6 -0.593 44.5 163.7-108.8 66.6 -0.1 5.6 -3.2 5 5 A N E +A 35 0A 90 -2,-0.6 2,-0.3 30,-0.2 30,-0.2 -0.777 10.5 179.4 -91.2 121.6 3.5 4.6 -2.8 6 6 A V E -A 34 0A 27 28,-2.6 28,-2.8 -2,-0.6 2,-0.2 -0.916 36.5 -99.3-122.3 147.4 4.6 3.7 0.7 7 7 A S > - 0 0 88 -2,-0.3 3,-0.9 26,-0.2 2,-0.3 -0.470 30.5-133.4 -64.1 134.0 8.0 2.5 2.1 8 8 A a T 3 S+ 0 0 28 23,-0.6 3,-0.3 22,-0.3 -1,-0.1 0.006 89.6 87.5 -86.9 31.5 7.9 -1.3 2.4 9 9 A T T 3 S+ 0 0 139 -2,-0.3 2,-0.8 1,-0.3 -1,-0.2 0.851 93.7 39.1 -89.5 -47.5 9.4 -1.1 5.9 10 10 A G <> + 0 0 18 -3,-0.9 4,-0.7 1,-0.2 -1,-0.3 -0.809 67.3 179.7-102.3 89.5 6.1 -0.8 7.6 11 11 A S H >> S+ 0 0 38 -2,-0.8 4,-2.6 -3,-0.3 3,-1.1 0.890 87.2 52.8 -53.1 -40.5 3.8 -3.1 5.6 12 12 A K H 3> S+ 0 0 163 1,-0.3 4,-2.0 2,-0.2 -1,-0.2 0.881 103.0 57.6 -62.1 -36.8 1.0 -2.1 8.0 13 13 A D H 34 S+ 0 0 99 -3,-0.3 -1,-0.3 1,-0.2 -2,-0.2 0.606 110.4 44.9 -71.4 -13.6 1.8 1.6 7.2 14 14 A b H S+ 0 0 35 0, 0.0 4,-2.5 0, 0.0 5,-0.5 0.875 114.3 56.7 -48.4 -40.8 -3.2 3.9 2.7 18 18 A c H X>S+ 0 0 0 -4,-2.4 4,-1.9 2,-0.2 5,-0.7 0.980 113.6 34.5 -57.8 -61.5 -4.4 0.9 0.8 19 19 A R H X5S+ 0 0 184 -4,-2.8 4,-1.5 1,-0.2 -1,-0.2 0.937 117.1 56.4 -59.5 -47.1 -7.7 0.4 2.6 20 20 A K H <5S+ 0 0 165 -4,-3.0 -1,-0.2 -5,-0.3 -2,-0.2 0.874 124.3 20.0 -53.1 -46.5 -8.1 4.2 3.0 21 21 A Q H <5S+ 0 0 128 -4,-2.5 -2,-0.2 -5,-0.2 -3,-0.2 0.945 137.7 23.6 -91.0 -62.8 -7.9 4.8 -0.8 22 22 A T H <5S- 0 0 57 -4,-1.9 2,-2.2 -5,-0.5 17,-0.4 0.376 87.6-139.2 -96.7 4.1 -8.6 1.7 -2.7 23 23 A G S < -B 33 0A 100 3,-2.2 3,-0.6 -2,-1.6 -22,-0.3 -0.844 49.3-112.2-100.0 143.7 8.3 -4.5 -2.6 31 31 A N T 3 S+ 0 0 154 -2,-0.4 -23,-0.6 1,-0.3 3,-0.1 0.834 119.4 44.5 -41.5 -45.1 11.5 -3.4 -0.8 32 32 A K T 3 S- 0 0 189 1,-0.3 2,-0.3 -25,-0.1 -1,-0.3 0.896 132.4 -7.8 -67.4 -42.8 11.8 -0.5 -3.2 33 33 A S E < - B 0 30A 32 -3,-0.6 -3,-2.2 -26,-0.1 2,-0.5 -0.982 54.3-139.9-160.2 139.5 8.1 0.6 -3.0 34 34 A b E -AB 6 29A 0 -28,-2.8 -28,-2.6 -2,-0.3 2,-0.6 -0.928 22.5-161.7-103.5 125.1 4.8 -0.6 -1.7 35 35 A K E -AB 5 28A 80 -7,-1.4 -7,-3.1 -2,-0.5 2,-0.7 -0.933 10.8-140.3-114.5 118.3 1.9 0.0 -4.1 36 36 A c E + B 0 27A 1 -32,-1.4 2,-0.3 -2,-0.6 -9,-0.2 -0.646 31.4 165.9 -80.7 112.9 -1.7 0.0 -2.7 37 37 A Y E - B 0 26A 63 -11,-1.9 -11,-2.2 -2,-0.7 -15,-0.0 -0.905 24.2-134.4-126.5 154.7 -4.1 -1.7 -5.1 38 38 A G 0 0 21 -2,-0.3 -15,-0.1 -13,-0.2 -1,-0.1 -0.033 360.0 360.0 -92.5-161.6 -7.6 -2.9 -4.7 39 39 A d 0 0 156 -17,-0.4 -2,-0.0 -2,-0.0 -1,-0.0 -0.750 360.0 360.0-131.6 360.0 -9.4 -6.1 -5.6