==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=21-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER IGG BINDING DOMAIN 09-JUL-97 1ZDA . COMPND 2 MOLECULE: MINI PROTEIN A DOMAIN, Z38; . SOURCE 2 ORGANISM_SCIENTIFIC: SYNTHETIC CONSTRUCT; . AUTHOR M.A.STAROVASNIK . 38 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3395.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 22 57.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 18.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 13 34.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 99 0, 0.0 34,-0.1 0, 0.0 35,-0.1 0.000 360.0 360.0 360.0 95.3 -4.1 3.1 -6.9 2 2 A V + 0 0 98 33,-0.4 2,-0.3 1,-0.2 34,-0.1 0.961 360.0 175.8 58.0 59.3 -1.6 5.9 -6.0 3 3 A A > - 0 0 29 1,-0.1 3,-0.6 3,-0.0 -1,-0.2 -0.687 40.9-129.7 -91.2 148.3 -4.0 8.0 -4.0 4 4 A Q T 3 S+ 0 0 210 -2,-0.3 -1,-0.1 1,-0.3 -2,-0.0 0.309 111.2 36.4 -78.0 8.7 -3.0 11.2 -2.2 5 5 A S T 3>>S- 0 0 52 2,-0.0 4,-2.6 0, 0.0 2,-1.2 -0.432 73.9-180.0-155.4 71.4 -4.7 9.8 0.9 6 6 A F T <45S+ 0 0 90 -3,-0.6 -2,-0.1 1,-0.2 -4,-0.0 -0.009 77.5 48.2 -75.7 32.4 -4.1 6.0 0.8 7 7 A N T 45S+ 0 0 107 -2,-1.2 -1,-0.2 29,-0.0 -2,-0.0 0.505 118.2 33.5-130.3 -51.7 -6.0 5.3 4.0 8 8 A M T 45S+ 0 0 156 -3,-0.3 -2,-0.2 3,-0.1 3,-0.1 0.925 135.3 29.3 -72.1 -48.5 -9.3 7.2 3.5 9 9 A Q T <5S+ 0 0 112 -4,-2.6 2,-0.8 1,-0.2 3,-0.4 0.967 121.1 53.4 -75.2 -58.0 -9.4 6.6 -0.2 10 10 A Q S S+ 0 0 121 -2,-0.8 4,-2.3 -3,-0.1 -1,-0.2 0.315 72.1 57.9-151.1 -49.0 -9.2 0.8 2.1 12 12 A R H > S+ 0 0 154 -3,-0.4 4,-2.6 1,-0.2 5,-0.2 0.849 105.1 56.1 -58.8 -36.9 -11.4 -1.5 -0.0 13 13 A R H > S+ 0 0 92 2,-0.2 4,-2.6 1,-0.2 -1,-0.2 0.938 108.8 45.1 -62.1 -49.3 -8.3 -2.6 -2.0 14 14 A F H > S+ 0 0 27 1,-0.2 4,-2.5 2,-0.2 5,-0.2 0.910 113.2 51.2 -60.2 -46.1 -6.5 -3.7 1.2 15 15 A Y H X S+ 0 0 121 -4,-2.3 4,-2.9 2,-0.2 -2,-0.2 0.918 111.8 47.1 -55.0 -48.3 -9.7 -5.5 2.4 16 16 A E H < S+ 0 0 93 -4,-2.6 -2,-0.2 1,-0.2 -1,-0.2 0.924 114.3 46.2 -63.5 -46.7 -10.0 -7.3 -0.9 17 17 A A H < S+ 0 0 4 -4,-2.6 3,-0.4 1,-0.2 -1,-0.2 0.857 115.8 46.3 -63.0 -39.8 -6.3 -8.3 -1.0 18 18 A L H < S+ 0 0 102 -4,-2.5 2,-1.9 1,-0.3 -2,-0.2 0.934 107.3 57.3 -69.0 -48.6 -6.4 -9.4 2.7 19 19 A H S < S+ 0 0 103 -4,-2.9 -1,-0.3 -5,-0.2 -4,-0.1 -0.439 83.7 101.6 -81.8 61.8 -9.7 -11.4 2.2 20 20 A D + 0 0 26 -2,-1.9 3,-0.5 -3,-0.4 -1,-0.1 -0.677 38.8 170.8-146.6 82.6 -8.1 -13.5 -0.5 21 21 A P S S+ 0 0 105 0, 0.0 4,-0.1 0, 0.0 7,-0.1 0.756 74.3 72.0 -69.1 -25.2 -7.1 -17.0 0.8 22 22 A N S S+ 0 0 140 2,-0.1 2,-0.5 6,-0.0 6,-0.0 0.922 90.2 65.8 -54.3 -49.0 -6.4 -18.2 -2.7 23 23 A L S S- 0 0 59 -3,-0.5 -3,-0.2 -6,-0.1 -1,-0.0 -0.688 97.9-127.3 -72.2 118.7 -3.3 -16.0 -2.6 24 24 A N >> - 0 0 92 -2,-0.5 4,-2.7 1,-0.1 2,-2.4 -0.236 34.1 -85.1 -66.7 160.4 -1.0 -17.5 0.0 25 25 A E T 34 S+ 0 0 152 1,-0.2 -1,-0.1 2,-0.2 -7,-0.0 -0.423 123.9 44.6 -75.2 72.6 0.3 -15.3 2.9 26 26 A E T 3> S+ 0 0 112 -2,-2.4 4,-1.9 0, 0.0 -1,-0.2 -0.044 116.9 40.0-171.6 -51.2 3.4 -14.0 1.0 27 27 A Q H <> S+ 0 0 107 -3,-0.7 4,-2.1 2,-0.2 -2,-0.2 0.906 119.7 49.2 -71.2 -45.5 1.9 -13.1 -2.4 28 28 A R H X S+ 0 0 46 -4,-2.7 4,-1.8 2,-0.2 -3,-0.2 0.920 112.1 48.9 -52.5 -49.1 -1.1 -11.8 -0.5 29 29 A N H > S+ 0 0 55 -5,-0.4 4,-2.8 1,-0.2 -2,-0.2 0.889 107.3 54.7 -61.4 -42.3 1.3 -9.9 1.8 30 30 A A H < S+ 0 0 49 -4,-1.9 -1,-0.2 2,-0.2 -2,-0.2 0.885 105.5 53.2 -59.7 -40.8 3.1 -8.5 -1.3 31 31 A K H >X S+ 0 0 81 -4,-2.1 4,-2.5 1,-0.2 3,-0.6 0.930 110.7 46.5 -59.2 -47.3 -0.2 -7.1 -2.6 32 32 A I H 3X S+ 0 0 27 -4,-1.8 2,-1.9 1,-0.3 4,-1.7 0.959 110.1 54.0 -56.8 -53.2 -0.8 -5.3 0.7 33 33 A K H 3< S+ 0 0 127 -4,-2.8 -1,-0.3 1,-0.2 -2,-0.1 -0.362 115.6 40.5 -79.3 55.0 2.8 -4.0 0.6 34 34 A S H <4 S+ 0 0 65 -2,-1.9 -1,-0.2 -3,-0.6 -2,-0.2 0.134 102.5 61.7-166.0 -48.6 2.2 -2.5 -2.9 35 35 A I H < S+ 0 0 33 -4,-2.5 -33,-0.4 1,-0.2 3,-0.2 0.907 120.9 32.1 -54.8 -43.6 -1.3 -1.1 -2.7 36 36 A R S < S+ 0 0 115 -4,-1.7 2,-1.7 -5,-0.2 -1,-0.2 0.921 115.6 61.4 -73.3 -49.4 0.2 1.2 0.0 37 37 A D 0 0 132 -5,-0.3 -1,-0.2 1,-0.2 -2,-0.0 -0.571 360.0 360.0 -86.6 76.8 3.7 1.3 -1.6 38 38 A D 0 0 101 -2,-1.7 -1,-0.2 -3,-0.2 -2,-0.1 0.392 360.0 360.0-153.3 360.0 2.9 3.0 -4.9