==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=21-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER METAL-BINDING PROTEIN 06-MAY-96 1ZFO . COMPND 2 MOLECULE: LASP-1; . SOURCE 2 ORGANISM_SCIENTIFIC: SUS SCROFA; . AUTHOR A.HAMMARSTROM,K.D.BERNDT,R.SILLARD,K.ADERMANN,G.OTTING . 30 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2734.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 13 43.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 10.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 13.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 238 0, 0.0 3,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 47.3 3.5 11.0 -8.5 2 2 A N - 0 0 104 1,-0.1 2,-0.4 9,-0.0 11,-0.1 -0.577 360.0 -96.3 -84.6 147.5 4.2 8.1 -6.0 3 3 A P - 0 0 50 0, 0.0 9,-2.8 0, 0.0 2,-0.3 -0.482 39.3-152.5 -68.5 115.1 1.5 5.5 -5.2 4 4 A N B -A 11 0A 106 -2,-0.4 7,-0.3 7,-0.3 20,-0.2 -0.744 31.6 -90.7 -84.9 142.4 -0.4 6.5 -2.0 5 5 A C - 0 0 8 5,-3.1 20,-0.2 -2,-0.3 -1,-0.1 -0.203 23.9-136.5 -51.0 130.0 -1.9 3.7 0.1 6 6 A A S S+ 0 0 50 18,-2.0 -1,-0.1 1,-0.1 19,-0.1 0.418 101.3 30.1 -68.3 -1.8 -5.5 2.9 -0.8 7 7 A R S S+ 0 0 179 3,-0.1 -1,-0.1 17,-0.1 18,-0.1 0.697 128.5 25.3-122.5 -57.5 -6.3 2.8 3.0 8 8 A C S S- 0 0 64 2,-0.2 -2,-0.1 18,-0.0 -4,-0.0 0.978 93.0-122.9 -83.8 -54.3 -4.1 5.1 5.2 9 9 A G + 0 0 40 1,-0.3 2,-0.2 0, 0.0 3,-0.1 0.203 66.5 117.9 130.6 -3.9 -3.1 7.8 2.6 10 10 A K S S- 0 0 146 -6,-0.1 -5,-3.1 1,-0.1 -1,-0.3 -0.542 73.0 -85.9 -93.3 156.9 0.8 7.7 2.7 11 11 A I B -A 4 0A 41 -7,-0.3 2,-0.8 -2,-0.2 -7,-0.3 -0.240 35.9-134.1 -48.4 139.1 3.2 6.8 -0.1 12 12 A V - 0 0 4 -9,-2.8 -1,-0.1 -3,-0.1 5,-0.1 -0.889 22.4-148.4-103.3 99.0 3.9 3.0 -0.4 13 13 A Y > - 0 0 140 -2,-0.8 3,-2.5 1,-0.1 -11,-0.0 -0.393 29.2-104.3 -64.1 154.6 7.7 2.8 -0.7 14 14 A P G > S+ 0 0 108 0, 0.0 3,-0.6 0, 0.0 -1,-0.1 0.639 118.4 70.6 -61.8 -13.7 9.0 -0.1 -2.9 15 15 A T G 3 S+ 0 0 128 1,-0.2 -3,-0.0 0, 0.0 -2,-0.0 0.739 106.7 34.3 -63.1 -28.4 9.9 -1.8 0.4 16 16 A E G < + 0 0 73 -3,-2.5 2,-2.0 2,-0.1 9,-0.3 -0.221 67.8 156.6-136.9 35.1 6.2 -2.4 1.3 17 17 A K < - 0 0 97 -3,-0.6 9,-0.1 7,-0.1 2,-0.1 -0.485 31.6-157.8 -68.4 80.0 4.3 -3.1 -2.0 18 18 A V - 0 0 26 -2,-2.0 2,-1.0 7,-0.9 7,-0.3 -0.402 10.4-131.4 -63.2 138.8 1.4 -5.0 -0.5 19 19 A N + 0 0 146 5,-0.1 2,-0.2 -2,-0.1 5,-0.1 -0.794 45.8 144.0 -98.7 89.0 -0.4 -7.3 -2.9 20 20 A C S S- 0 0 22 3,-1.2 5,-0.0 -2,-1.0 10,-0.0 -0.390 73.1 -53.0 -93.6-163.4 -4.2 -6.8 -2.7 21 21 A L S S- 0 0 167 1,-0.2 3,-0.1 -2,-0.2 -2,-0.0 0.763 115.6 -32.1 -33.8 -63.7 -6.4 -6.9 -5.8 22 22 A D S S+ 0 0 112 2,-0.0 2,-0.2 1,-0.0 -1,-0.2 0.247 118.0 54.4-154.8 -1.2 -4.7 -4.5 -8.1 23 23 A K S S- 0 0 92 -20,-0.0 -3,-1.2 -5,-0.0 2,-0.3 -0.796 75.8 -81.1-145.5-173.7 -3.1 -1.7 -6.0 24 24 A F + 0 0 64 -2,-0.2 -18,-2.0 -20,-0.2 2,-0.2 -0.702 39.5 150.1-113.5 138.4 -0.8 -0.7 -3.1 25 25 A W - 0 0 47 -2,-0.3 -7,-0.9 -9,-0.3 2,-0.3 -0.616 40.6-104.7-136.6-168.1 -1.3 -0.6 0.6 26 26 A H >> - 0 0 19 -2,-0.2 4,-1.1 -9,-0.1 3,-0.8 -0.833 42.8 -87.8-123.4 172.0 1.1 -1.1 3.6 27 27 A K G >4 S+ 0 0 170 1,-0.3 3,-1.1 -2,-0.3 -1,-0.1 0.895 127.8 29.8 -42.1 -68.4 1.5 -4.1 6.0 28 28 A A G 34 S+ 0 0 103 1,-0.2 -1,-0.3 2,-0.1 0, 0.0 0.614 117.0 62.5 -72.3 -9.0 -1.1 -3.1 8.6 29 29 A C G <4 0 0 22 -3,-0.8 -1,-0.2 1,-0.2 -2,-0.2 0.568 360.0 360.0 -93.5 -10.4 -3.2 -1.2 5.9 30 30 A F << 0 0 168 -4,-1.1 -1,-0.2 -3,-1.1 -2,-0.1 0.812 360.0 360.0 -37.9 360.0 -3.9 -4.4 3.7