==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=21-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER LEUCINE ZIPPER 30-OCT-96 1ZIL . COMPND 2 MOLECULE: GENERAL CONTROL PROTEIN GCN4; . SOURCE 2 ORGANISM_SCIENTIFIC: SACCHAROMYCES CEREVISIAE; . AUTHOR L.GONZALEZ JUNIOR,D.N.WOOLFSON,T.ALBER . 60 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4748.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 53 88.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 5.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 50 83.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A R > 0 0 136 0, 0.0 4,-1.8 0, 0.0 5,-0.1 0.000 360.0 360.0 360.0 -35.1 39.0 15.0 14.7 2 2 A M H > + 0 0 60 2,-0.2 4,-3.4 1,-0.2 5,-0.2 0.937 360.0 50.9 -61.0 -50.9 37.3 18.3 15.9 3 3 A K H > S+ 0 0 127 1,-0.3 4,-1.5 2,-0.2 -1,-0.2 0.647 108.9 53.9 -61.7 -18.0 37.7 19.8 12.4 4 4 A Q H > S+ 0 0 129 2,-0.2 4,-1.3 3,-0.1 -1,-0.3 0.883 110.6 43.8 -83.2 -40.8 36.2 16.6 11.2 5 5 A L H X S+ 0 0 25 -4,-1.8 4,-1.6 2,-0.2 -2,-0.2 0.868 113.3 52.8 -69.6 -37.3 33.2 17.1 13.4 6 6 A E H X S+ 0 0 79 -4,-3.4 4,-1.8 1,-0.2 -1,-0.2 0.934 109.3 48.1 -62.9 -47.7 33.1 20.7 12.4 7 7 A D H X S+ 0 0 66 -4,-1.5 4,-2.1 1,-0.2 -1,-0.2 0.758 107.4 56.7 -64.9 -27.8 33.1 19.9 8.7 8 8 A K H X S+ 0 0 95 -4,-1.3 4,-2.3 2,-0.2 -1,-0.2 0.888 105.7 49.5 -71.6 -41.6 30.3 17.3 9.1 9 9 A V H X S+ 0 0 25 -4,-1.6 4,-1.3 1,-0.2 -2,-0.2 0.951 113.4 47.7 -62.6 -46.8 28.0 19.8 10.7 10 10 A E H X S+ 0 0 110 -4,-1.8 4,-1.2 1,-0.2 3,-0.3 0.877 110.8 49.7 -62.6 -39.9 28.7 22.2 7.9 11 11 A E H X S+ 0 0 87 -4,-2.1 4,-1.2 1,-0.2 -1,-0.2 0.912 109.5 53.1 -67.8 -35.4 28.2 19.6 5.3 12 12 A L H X S+ 0 0 7 -4,-2.3 4,-2.0 1,-0.2 -1,-0.2 0.714 102.0 57.6 -68.5 -24.3 24.9 18.6 6.9 13 13 A L H X S+ 0 0 67 -4,-1.3 4,-2.9 -3,-0.3 -1,-0.2 0.910 104.5 52.9 -72.1 -39.5 23.5 22.2 6.9 14 14 A S H X S+ 0 0 83 -4,-1.2 4,-1.9 2,-0.2 -2,-0.2 0.835 110.1 47.4 -61.8 -38.6 24.0 22.4 3.1 15 15 A K H X S+ 0 0 103 -4,-1.2 4,-2.3 2,-0.2 -1,-0.2 0.959 110.8 52.2 -68.7 -47.8 22.0 19.2 2.7 16 16 A Q H X S+ 0 0 27 -4,-2.0 4,-2.2 1,-0.2 5,-0.2 0.920 109.7 48.9 -52.9 -49.4 19.3 20.5 5.0 17 17 A Y H X S+ 0 0 122 -4,-2.9 4,-2.4 2,-0.2 -1,-0.2 0.933 109.1 50.3 -58.9 -48.4 19.0 23.7 3.0 18 18 A H H X S+ 0 0 115 -4,-1.9 4,-2.2 1,-0.2 -1,-0.2 0.938 111.7 52.4 -51.9 -46.8 18.7 22.0 -0.4 19 19 A L H X S+ 0 0 14 -4,-2.3 4,-2.1 1,-0.2 -1,-0.2 0.844 108.0 47.7 -57.5 -45.3 16.0 19.8 1.3 20 20 A E H X S+ 0 0 68 -4,-2.2 4,-1.1 2,-0.2 -1,-0.2 0.861 109.1 54.7 -70.8 -31.5 13.9 22.7 2.5 21 21 A N H >X S+ 0 0 114 -4,-2.4 4,-2.4 -5,-0.2 3,-0.5 0.971 110.3 46.7 -61.8 -49.1 14.1 24.4 -0.8 22 22 A E H 3X S+ 0 0 36 -4,-2.2 4,-3.8 1,-0.3 5,-0.2 0.891 108.3 53.4 -54.4 -51.8 12.7 21.2 -2.5 23 23 A V H 3X S+ 0 0 11 -4,-2.1 4,-1.0 1,-0.2 -1,-0.3 0.747 111.0 49.8 -57.5 -28.4 9.9 20.7 0.0 24 24 A A H < S+ 0 0 109 -4,-1.0 3,-3.9 -5,-0.2 -2,-0.2 0.986 103.4 48.2 -66.1 -58.2 4.5 22.7 -1.7 28 28 A K H 3< S+ 0 0 180 -4,-2.2 -1,-0.2 1,-0.3 -2,-0.2 0.926 99.1 74.2 -42.7 -47.5 3.6 25.3 -4.2 29 29 A L T 3< 0 0 96 -4,-1.8 -1,-0.3 -5,-0.3 -2,-0.2 0.640 360.0 360.0 -39.4 -24.5 3.1 22.3 -6.5 30 30 A V < 0 0 114 -3,-3.9 31,-0.1 -4,-0.2 30,-0.0 -0.728 360.0 360.0 -93.5 360.0 -0.1 21.6 -4.5 31 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 32 1 B R >> 0 0 161 0, 0.0 4,-1.5 0, 0.0 3,-0.6 0.000 360.0 360.0 360.0 106.8 33.9 20.5 22.6 33 2 B M H 3> + 0 0 50 1,-0.2 4,-4.2 2,-0.2 5,-0.3 0.807 360.0 53.0 -41.3 -62.9 33.1 17.1 21.1 34 3 B K H 3> S+ 0 0 108 1,-0.2 4,-2.0 2,-0.2 -1,-0.2 0.808 110.4 48.4 -55.6 -34.1 29.8 15.9 22.6 35 4 B Q H <> S+ 0 0 134 -3,-0.6 4,-2.4 2,-0.2 -1,-0.2 0.954 116.3 43.1 -73.2 -41.9 28.0 19.0 21.6 36 5 B L H X S+ 0 0 31 -4,-1.5 4,-1.7 2,-0.2 -2,-0.2 0.928 116.3 48.7 -62.4 -45.9 29.3 18.8 18.1 37 6 B E H X S+ 0 0 47 -4,-4.2 4,-1.9 1,-0.2 -1,-0.2 0.868 112.8 49.3 -59.8 -38.1 28.6 15.1 18.1 38 7 B D H X S+ 0 0 75 -4,-2.0 4,-0.9 -5,-0.3 -2,-0.2 0.844 107.6 52.8 -68.1 -40.3 25.1 16.0 19.4 39 8 B K H X S+ 0 0 102 -4,-2.4 4,-2.9 2,-0.2 -1,-0.2 0.795 108.3 52.3 -67.1 -33.8 24.5 18.5 16.7 40 9 B V H X S+ 0 0 22 -4,-1.7 4,-3.0 2,-0.2 5,-0.2 0.963 110.8 44.5 -67.3 -53.2 25.4 15.9 14.1 41 10 B E H X S+ 0 0 123 -4,-1.9 4,-0.7 1,-0.2 -1,-0.2 0.757 115.3 53.5 -63.2 -22.4 23.0 13.4 15.4 42 11 B E H X S+ 0 0 123 -4,-0.9 4,-1.1 -5,-0.2 3,-0.4 0.950 111.8 39.8 -77.5 -49.1 20.6 16.3 15.7 43 12 B L H X S+ 0 0 16 -4,-2.9 4,-2.3 1,-0.2 3,-0.3 0.898 110.6 60.4 -63.2 -44.7 20.9 17.5 12.1 44 13 B L H X S+ 0 0 60 -4,-3.0 4,-1.1 1,-0.2 -1,-0.2 0.773 103.8 49.4 -56.2 -32.8 21.0 13.9 10.7 45 14 B S H X S+ 0 0 74 -4,-0.7 4,-1.6 -3,-0.4 -1,-0.2 0.799 109.0 51.8 -79.2 -31.1 17.5 13.1 12.2 46 15 B K H X S+ 0 0 74 -4,-1.1 4,-1.9 -3,-0.3 5,-0.2 0.867 105.7 57.5 -71.7 -33.6 16.0 16.3 10.7 47 16 B Q H X S+ 0 0 16 -4,-2.3 4,-2.3 1,-0.2 -2,-0.2 0.895 105.3 48.7 -61.3 -40.2 17.5 15.2 7.4 48 17 B Y H X S+ 0 0 120 -4,-1.1 4,-1.8 1,-0.2 -1,-0.2 0.852 112.0 49.7 -68.2 -37.1 15.5 11.9 7.6 49 18 B H H < S+ 0 0 101 -4,-1.6 4,-0.4 2,-0.2 -1,-0.2 0.789 113.2 44.7 -73.5 -29.2 12.3 13.7 8.4 50 19 B L H X S+ 0 0 9 -4,-1.9 4,-2.2 2,-0.2 3,-0.4 0.915 110.8 54.9 -77.9 -44.7 12.7 16.2 5.5 51 20 B E H X S+ 0 0 80 -4,-2.3 4,-2.4 1,-0.3 -2,-0.2 0.903 109.8 45.1 -52.5 -52.5 13.7 13.5 3.0 52 21 B N H X S+ 0 0 86 -4,-1.8 4,-2.0 1,-0.2 -1,-0.3 0.694 108.9 59.6 -68.5 -19.9 10.6 11.4 3.7 53 22 B E H > S+ 0 0 33 -4,-0.4 4,-2.8 -3,-0.4 -2,-0.2 0.966 106.8 44.1 -69.8 -53.0 8.5 14.5 3.5 54 23 B V H X S+ 0 0 6 -4,-2.2 4,-2.7 1,-0.2 3,-0.3 0.971 111.5 54.1 -52.6 -57.7 9.6 15.2 0.0 55 24 B A H X S+ 0 0 55 -4,-2.4 4,-1.1 1,-0.3 -1,-0.2 0.870 111.2 45.5 -44.6 -46.1 9.1 11.6 -0.8 56 25 B R H X S+ 0 0 159 -4,-2.0 4,-1.3 1,-0.2 -1,-0.3 0.870 112.7 51.8 -65.4 -39.2 5.5 11.9 0.5 57 26 B L H X S+ 0 0 19 -4,-2.8 4,-1.5 -3,-0.3 -2,-0.2 0.824 101.6 60.5 -65.6 -38.5 5.0 15.1 -1.4 58 27 B K H < S+ 0 0 107 -4,-2.7 -1,-0.2 3,-0.2 -2,-0.2 0.843 104.9 49.3 -61.4 -37.1 6.2 13.7 -4.7 59 28 B K H < S+ 0 0 175 -4,-1.1 -2,-0.2 -5,-0.3 -1,-0.1 0.983 108.6 48.3 -65.5 -72.5 3.5 11.2 -4.7 60 29 B L H < 0 0 127 -4,-1.3 -1,-0.2 1,-0.1 -2,-0.2 0.757 360.0 360.0 -33.0 -33.0 0.6 13.5 -4.0 61 30 B V < 0 0 75 -4,-1.5 -3,-0.2 -5,-0.2 -2,-0.1 0.574 360.0 360.0-116.7 360.0 2.2 15.6 -6.8