==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=21-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER LEUCINE ZIPPER 30-OCT-96 1ZIM . COMPND 2 MOLECULE: GENERAL CONTROL PROTEIN GCN4; . SOURCE 2 ORGANISM_SCIENTIFIC: SACCHAROMYCES CEREVISIAE; . AUTHOR L.GONZALEZ JUNIOR,D.N.WOOLFSON,T.ALBER . 96 3 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 6722.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 84 87.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 5.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 79 82.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A R 0 0 152 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -1.7 -12.7 -28.0 37.1 2 2 A M > + 0 0 66 3,-0.1 4,-1.9 2,-0.1 5,-0.1 0.608 360.0 46.3-118.1 -37.1 -13.9 -27.3 33.6 3 3 A K H > S+ 0 0 136 2,-0.2 4,-2.3 1,-0.2 5,-0.1 0.734 110.3 57.1 -76.3 -32.2 -17.0 -25.2 34.5 4 4 A Q H > S+ 0 0 64 2,-0.2 4,-1.4 1,-0.2 -1,-0.2 0.922 109.8 42.8 -66.9 -45.7 -14.8 -23.3 36.8 5 5 A L H > S+ 0 0 0 2,-0.2 4,-3.2 1,-0.2 -2,-0.2 0.945 116.3 48.3 -63.6 -48.7 -12.4 -22.4 34.1 6 6 A E H X S+ 0 0 63 -4,-1.9 4,-0.8 1,-0.3 -2,-0.2 0.832 111.0 51.3 -58.2 -39.9 -15.3 -21.6 31.7 7 7 A D H X S+ 0 0 89 -4,-2.3 4,-1.3 2,-0.2 -1,-0.3 0.764 111.0 48.3 -72.5 -29.5 -17.0 -19.5 34.4 8 8 A K H X S+ 0 0 44 -4,-1.4 4,-2.0 2,-0.2 5,-0.3 0.904 104.0 58.3 -80.1 -41.1 -13.8 -17.6 34.9 9 9 A V H X S+ 0 0 7 -4,-3.2 4,-1.7 1,-0.2 -1,-0.2 0.829 106.7 52.5 -57.2 -25.0 -13.2 -17.0 31.2 10 10 A E H X S+ 0 0 120 -4,-0.8 4,-3.0 2,-0.2 5,-0.2 0.898 102.6 53.9 -78.1 -39.8 -16.6 -15.3 31.3 11 11 A E H X S+ 0 0 69 -4,-1.3 4,-2.8 1,-0.2 5,-0.3 0.978 115.0 43.4 -55.3 -50.1 -15.8 -12.9 34.2 12 12 A L H X S+ 0 0 2 -4,-2.0 4,-2.1 1,-0.2 -1,-0.2 0.866 114.5 49.1 -58.3 -42.9 -12.8 -11.8 32.2 13 13 A L H X S+ 0 0 55 -4,-1.7 4,-1.3 -5,-0.3 -1,-0.2 0.873 114.3 47.4 -65.8 -39.2 -14.8 -11.6 29.0 14 14 A S H X S+ 0 0 68 -4,-3.0 4,-1.5 2,-0.2 -2,-0.2 0.905 114.8 42.0 -68.8 -49.8 -17.5 -9.7 30.7 15 15 A K H X S+ 0 0 82 -4,-2.8 4,-2.6 -5,-0.2 5,-0.2 0.851 109.5 60.9 -67.5 -37.0 -15.3 -7.1 32.5 16 16 A Q H X S+ 0 0 2 -4,-2.1 4,-1.8 -5,-0.3 -1,-0.2 0.874 104.3 48.9 -56.1 -45.0 -13.2 -6.8 29.3 17 17 A Y H X S+ 0 0 156 -4,-1.3 4,-1.4 2,-0.2 -1,-0.2 0.903 112.2 47.7 -63.0 -48.7 -16.3 -5.5 27.3 18 18 A H H X S+ 0 0 102 -4,-1.5 4,-2.1 1,-0.2 3,-0.2 0.953 111.8 49.7 -60.8 -49.8 -17.2 -3.0 29.9 19 19 A L H X S+ 0 0 5 -4,-2.6 4,-2.1 1,-0.3 5,-0.3 0.799 108.0 52.4 -59.1 -37.0 -13.6 -1.6 30.3 20 20 A E H X S+ 0 0 71 -4,-1.8 4,-1.9 -5,-0.2 -1,-0.3 0.872 110.5 50.9 -69.6 -30.4 -13.2 -1.2 26.6 21 21 A N H X S+ 0 0 77 -4,-1.4 4,-1.5 -3,-0.2 -2,-0.2 0.944 109.0 49.2 -68.2 -46.3 -16.4 0.7 26.8 22 22 A E H X S+ 0 0 41 -4,-2.1 4,-2.1 1,-0.2 -2,-0.2 0.843 115.8 42.7 -57.1 -43.5 -15.3 2.9 29.6 23 23 A V H X S+ 0 0 5 -4,-2.1 4,-1.5 2,-0.2 -1,-0.2 0.831 107.0 59.9 -75.3 -36.7 -12.0 3.8 27.9 24 24 A A H X S+ 0 0 48 -4,-1.9 4,-1.5 -5,-0.3 -2,-0.2 0.901 111.0 42.3 -59.5 -40.0 -13.4 4.3 24.5 25 25 A R H X S+ 0 0 151 -4,-1.5 4,-3.1 2,-0.2 3,-0.4 0.966 110.3 53.7 -70.4 -57.6 -15.7 7.1 26.0 26 26 A L H < S+ 0 0 7 -4,-2.1 4,-0.2 1,-0.3 6,-0.2 0.773 106.8 57.1 -49.0 -30.0 -13.0 8.7 28.1 27 27 A K H >X S+ 0 0 63 -4,-1.5 3,-1.2 2,-0.2 4,-0.7 0.949 111.0 39.0 -67.0 -52.5 -11.0 8.9 24.9 28 28 A K H >< S+ 0 0 152 -4,-1.5 3,-0.5 -3,-0.4 -2,-0.2 0.855 112.9 58.3 -64.5 -37.0 -13.7 10.9 23.0 29 29 A L T 3< S+ 0 0 87 -4,-3.1 -1,-0.3 1,-0.2 -2,-0.2 0.517 114.1 38.2 -67.4 -12.3 -14.2 12.8 26.3 30 30 A V T <4 S- 0 0 49 -3,-1.2 -1,-0.2 -4,-0.2 -2,-0.2 0.318 111.3-117.1-117.5 -6.1 -10.5 13.8 26.1 31 31 A G << 0 0 67 -4,-0.7 -3,-0.1 -3,-0.5 -4,-0.1 -0.147 360.0 360.0 93.5 -37.9 -10.3 14.3 22.4 32 32 A E 0 0 98 -6,-0.2 -4,-0.2 -5,-0.2 -5,-0.1 0.759 360.0 360.0 -42.4 360.0 -7.8 11.5 22.2 33 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 34 1 B R > 0 0 184 0, 0.0 4,-2.1 0, 0.0 5,-0.2 0.000 360.0 360.0 360.0 -77.2 -3.6 -28.2 29.3 35 2 B M H > + 0 0 50 1,-0.2 4,-2.9 2,-0.2 5,-0.2 0.921 360.0 46.7 -48.7 -56.4 -6.0 -27.4 32.2 36 3 B K H > S+ 0 0 136 2,-0.2 4,-1.9 1,-0.2 -1,-0.2 0.843 110.5 51.3 -53.8 -47.8 -3.2 -26.2 34.6 37 4 B Q H > S+ 0 0 148 2,-0.2 4,-2.5 1,-0.2 -1,-0.2 0.925 112.5 47.1 -57.6 -52.5 -1.5 -23.9 32.1 38 5 B L H X S+ 0 0 15 -4,-2.1 4,-1.6 1,-0.2 5,-0.2 0.968 109.7 53.3 -55.9 -57.3 -4.8 -22.3 31.3 39 6 B E H X S+ 0 0 33 -4,-2.9 4,-1.5 1,-0.2 -1,-0.2 0.852 109.5 50.1 -48.7 -38.2 -5.6 -21.9 35.0 40 7 B D H >X S+ 0 0 105 -4,-1.9 4,-1.2 1,-0.2 3,-0.9 0.998 110.9 46.3 -63.2 -60.1 -2.4 -20.1 35.4 41 8 B K H 3X S+ 0 0 76 -4,-2.5 4,-1.2 1,-0.2 -1,-0.2 0.606 110.8 55.3 -54.2 -20.8 -2.9 -17.8 32.5 42 9 B V H 3X S+ 0 0 0 -4,-1.6 4,-1.6 -5,-0.2 -1,-0.2 0.799 104.9 49.8 -87.2 -32.7 -6.5 -17.0 33.7 43 10 B E H X S+ 0 0 71 -4,-0.8 4,-1.3 2,-0.2 3,-0.5 0.983 111.4 44.9 -68.7 -51.8 -5.3 -10.2 38.3 48 15 B K H 3X S+ 0 0 71 -4,-2.9 4,-2.6 1,-0.2 -2,-0.2 0.806 108.4 58.0 -57.4 -39.5 -4.4 -7.7 35.7 49 16 B Q H 3X S+ 0 0 0 -4,-1.9 4,-1.9 2,-0.2 -1,-0.2 0.860 101.2 54.3 -61.0 -41.5 -8.0 -6.9 35.0 50 17 B Y H 0 0 179 0, 0.0 4,-1.6 0, 0.0 5,-0.0 0.000 360.0 360.0 360.0 -20.3 -12.5 -27.9 23.8 68 2 C M H > + 0 0 27 2,-0.2 4,-2.4 1,-0.2 5,-0.1 0.812 360.0 50.3 -84.8 -31.9 -9.2 -27.0 25.2 69 3 C K H > S+ 0 0 95 2,-0.2 4,-1.9 1,-0.2 -1,-0.2 0.860 106.8 57.4 -71.8 -33.7 -8.0 -25.5 22.0 70 4 C Q H >> S+ 0 0 100 2,-0.2 4,-1.4 1,-0.2 3,-0.8 0.976 109.4 44.6 -53.6 -60.1 -11.2 -23.5 22.0 71 5 C L H 3X S+ 0 0 6 -4,-1.6 4,-3.0 1,-0.3 5,-0.4 0.863 108.4 55.5 -50.6 -47.8 -10.3 -22.1 25.4 72 6 C E H 3X S+ 0 0 77 -4,-2.4 4,-1.8 1,-0.2 -1,-0.3 0.865 108.1 53.9 -55.8 -34.2 -6.8 -21.4 24.3 73 7 C D H