==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=21-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ZINC FINGER 20-NOV-97 1ZNM . COMPND 2 MOLECULE: YY1; . SOURCE 2 SYNTHETIC: YES; . AUTHOR J.H.VILES,S.U.PATEL,J.B.O.MITCHELL,C.M.MOODY,D.E.JUSTICE, . 27 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2443.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 13 48.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 11.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 29.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 2 A F 0 0 134 0, 0.0 2,-0.3 0, 0.0 11,-0.2 0.000 360.0 360.0 360.0-111.0 16.7 -3.9 -3.2 2 3 A Q - 0 0 140 9,-0.2 9,-0.2 16,-0.0 2,-0.2 -0.906 360.0-116.7-178.5 150.6 15.8 -0.3 -2.1 3 4 A C + 0 0 6 7,-2.4 9,-0.1 -2,-0.3 15,-0.0 -0.558 25.1 169.8 -95.5 164.8 16.7 2.4 0.5 4 5 A T + 0 0 130 -2,-0.2 2,-0.4 7,-0.0 -1,-0.1 0.004 41.7 105.6-164.1 39.4 14.5 3.8 3.2 5 6 A F S >> S- 0 0 104 5,-0.1 4,-1.7 0, 0.0 3,-0.7 -0.957 79.6 -31.1-128.5 148.0 16.6 5.9 5.5 6 7 A X T 34 S- 0 0 92 -2,-0.4 19,-0.0 1,-0.2 0, 0.0 0.001 106.7 -49.5 44.4-150.1 17.0 9.7 6.0 7 8 A C T 34 S+ 0 0 122 1,-0.1 -1,-0.2 -3,-0.0 0, 0.0 0.455 126.3 83.3 -95.2 1.1 16.5 11.7 2.8 8 9 A C T <4 + 0 0 50 -3,-0.7 -2,-0.2 1,-0.1 -1,-0.1 0.993 49.5 160.7 -66.2 -59.8 18.9 9.5 0.9 9 10 A G < + 0 0 43 -4,-1.7 -6,-0.2 -7,-0.1 -3,-0.1 0.892 25.0 173.5 38.9 49.9 16.3 6.8 0.1 10 11 A K - 0 0 127 -5,-0.1 -7,-2.4 -8,-0.1 2,-0.4 -0.004 32.6 -98.9 -73.5-172.6 18.6 5.6 -2.7 11 12 A R - 0 0 213 -9,-0.2 2,-0.3 -7,-0.0 -9,-0.2 -0.917 28.4-150.8-114.6 137.5 18.0 2.4 -4.8 12 13 A F - 0 0 17 -2,-0.4 6,-0.1 -11,-0.2 3,-0.1 -0.811 10.9-173.1-106.1 146.5 19.6 -1.0 -4.1 13 14 A S - 0 0 87 1,-0.4 2,-0.3 -2,-0.3 -1,-0.1 0.845 66.2 -13.9-102.2 -52.1 20.3 -3.6 -6.8 14 15 A L S > S- 0 0 107 1,-0.1 4,-2.2 -13,-0.0 -1,-0.4 -0.893 77.9 -84.6-144.3 174.4 21.5 -6.7 -5.0 15 16 A D H >>S+ 0 0 91 -2,-0.3 4,-2.6 2,-0.2 5,-0.6 0.953 126.5 51.7 -49.1 -55.0 22.8 -7.7 -1.5 16 17 A F H >5S+ 0 0 145 1,-0.3 4,-2.3 2,-0.2 -1,-0.2 0.961 118.8 36.2 -48.3 -55.5 26.4 -6.6 -2.4 17 18 A N H 45S+ 0 0 64 1,-0.2 4,-0.4 2,-0.2 5,-0.3 0.698 112.8 66.3 -71.4 -14.4 25.1 -3.2 -3.5 18 19 A L H X5S+ 0 0 41 -4,-2.2 4,-1.7 -3,-0.4 3,-0.4 0.977 114.0 24.2 -71.3 -55.2 22.6 -3.5 -0.6 19 20 A K H X5S+ 0 0 112 -4,-2.6 4,-1.7 1,-0.2 -2,-0.2 0.858 113.1 68.7 -79.9 -33.1 25.1 -3.4 2.3 20 21 A T H <4 S+ 0 0 19 -4,-0.4 3,-2.4 -3,-0.4 4,-0.3 0.808 117.3 47.8-104.9 -72.2 25.2 1.3 0.4 22 23 A V H 3X S+ 0 0 39 -4,-1.7 4,-2.0 1,-0.3 5,-0.4 0.768 87.4 95.4 -45.0 -22.0 23.0 1.2 3.6 23 24 A K H 3X S+ 0 0 126 -4,-1.7 4,-1.7 -5,-0.3 -1,-0.3 0.839 81.4 54.3 -41.1 -34.8 26.4 0.8 5.3 24 25 A I H X4 S+ 0 0 105 -3,-2.4 3,-0.8 3,-0.3 -1,-0.2 0.996 102.8 50.8 -66.7 -60.1 26.3 4.5 5.9 25 26 A H H 34 S+ 0 0 43 -4,-0.3 -1,-0.2 1,-0.3 -2,-0.2 0.830 122.0 38.3 -46.9 -26.2 22.9 4.7 7.6 26 27 A T H 3< 0 0 109 -4,-2.0 -1,-0.3 0, 0.0 -2,-0.3 0.676 360.0 360.0 -97.6 -20.5 24.5 2.0 9.7 27 28 A G << 0 0 90 -4,-1.7 -3,-0.3 -3,-0.8 -2,-0.1 0.760 360.0 360.0 115.7 360.0 27.9 3.6 9.8