==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 12-MAY-05 1ZNT . COMPND 2 MOLECULE: AMARANTHUS CAUDATUS ANTIMICROBIAL PEPTIDE 2; . SOURCE 2 SYNTHETIC: YES; . AUTHOR M.I.CHAVEZ,C.ANDREU,P.VIDAL,N.ABOITIZ,F.FREIRE,P.GROVES,J.L. . 30 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2433.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 14 46.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 5 16.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 10.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A V 0 0 157 0, 0.0 19,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 135.6 7.3 4.2 8.3 2 2 A G + 0 0 28 1,-0.3 19,-2.9 18,-0.1 2,-0.4 0.662 360.0 153.6 93.4 20.8 5.0 1.8 6.4 3 3 A E B -A 20 0A 94 17,-0.3 17,-0.3 12,-0.1 -1,-0.3 -0.689 37.4-130.8 -89.9 131.9 6.4 2.8 3.0 4 4 A a - 0 0 7 15,-2.6 2,-2.4 -2,-0.4 5,-0.2 -0.406 26.7-106.7 -73.9 161.9 6.3 0.4 0.0 5 5 A V S S- 0 0 132 3,-3.0 3,-0.2 1,-0.2 -1,-0.1 -0.405 86.0 -70.5 -76.3 57.0 9.2 -0.5 -2.3 6 6 A R S S+ 0 0 165 -2,-2.4 -1,-0.2 13,-0.3 3,-0.1 0.733 129.7 9.3 48.5 35.6 7.2 1.7 -4.8 7 7 A G S S+ 0 0 42 1,-0.4 2,-0.3 12,-0.1 8,-0.3 0.133 121.6 49.4 162.3 -24.8 4.5 -0.9 -5.0 8 8 A R - 0 0 120 -3,-0.2 -3,-3.0 6,-0.1 -1,-0.4 -0.880 43.0-178.3-136.0 167.2 5.0 -3.7 -2.4 9 9 A b - 0 0 22 1,-0.3 3,-0.2 -2,-0.3 -5,-0.1 -0.766 49.7 -45.8-143.6-179.4 5.7 -4.5 1.3 10 10 A P S > S- 0 0 90 0, 0.0 2,-1.9 0, 0.0 3,-1.4 0.248 85.3 -54.7 -53.2 177.1 6.2 -7.7 3.4 11 11 A S T 3 S+ 0 0 134 1,-0.2 0, 0.0 0, 0.0 0, 0.0 -0.364 126.0 19.9 -69.7 82.4 4.1 -10.9 3.1 12 12 A G T 3 S+ 0 0 44 -2,-1.9 -1,-0.2 1,-0.4 2,-0.1 0.116 93.6 102.4 155.4 -19.1 0.6 -9.8 3.8 13 13 A M < - 0 0 77 -3,-1.4 -1,-0.4 8,-0.0 -4,-0.3 -0.362 52.2-143.7 -84.4 166.1 0.2 -6.0 3.1 14 14 A c E -B 22 0B 22 8,-3.0 8,-2.4 -6,-0.1 2,-0.3 -0.809 23.4-119.9-119.9 162.9 -1.3 -4.1 0.2 15 15 A a E -B 21 0B 32 -2,-0.3 6,-0.2 -8,-0.3 2,-0.1 -0.817 19.6-142.1-120.1 149.9 0.1 -0.7 -1.2 16 16 A S > - 0 0 22 4,-2.9 3,-1.3 -2,-0.3 11,-0.1 -0.310 33.6 -92.5-108.3-177.4 -1.3 2.8 -1.6 17 17 A Q T 3 S+ 0 0 124 9,-0.4 10,-0.1 1,-0.3 -1,-0.0 0.620 129.1 41.6 -82.0 -12.0 -1.3 5.8 -3.9 18 18 A X T 3 S- 0 0 198 2,-0.1 -1,-0.3 0, 0.0 -12,-0.1 0.329 126.0-104.9 -97.2 -0.6 1.6 7.4 -2.0 19 19 A G S < S+ 0 0 6 -3,-1.3 -15,-2.6 1,-0.3 2,-0.3 0.948 76.2 136.2 66.1 52.0 3.2 4.0 -1.8 20 20 A X B -A 3 0A 95 -17,-0.3 -4,-2.9 -15,-0.1 2,-0.3 -0.835 42.3-136.1-111.3 164.5 2.4 3.2 1.9 21 21 A b E +B 15 0B 20 -19,-2.9 2,-0.3 -2,-0.3 -6,-0.2 -0.879 39.6 108.1-132.0 156.1 1.1 -0.2 2.9 22 22 A G E -B 14 0B 17 -8,-2.4 -8,-3.0 -2,-0.3 -10,-0.1 -0.952 65.7 -90.8 173.1-165.4 -1.4 -1.9 5.1 23 23 A K S S+ 0 0 147 -2,-0.3 -8,-0.1 -10,-0.2 -2,-0.0 -0.113 85.5 102.0-128.9 32.5 -4.7 -3.8 4.9 24 24 A G S >>>S- 0 0 20 -10,-0.1 4,-2.6 5,-0.0 3,-2.1 -0.666 88.3 -71.5-111.8 172.0 -7.2 -0.9 5.2 25 25 A P H 3>5S+ 0 0 100 0, 0.0 4,-2.6 0, 0.0 5,-0.3 0.743 127.4 31.4 -33.1 -72.4 -9.2 1.1 2.6 26 26 A K H 345S+ 0 0 143 1,-0.2 -9,-0.4 2,-0.2 -4,-0.0 0.574 122.1 53.4 -73.4 -5.8 -6.7 3.1 0.5 27 27 A Y H <45S+ 0 0 97 -3,-2.1 -1,-0.2 3,-0.2 -5,-0.1 0.859 133.8 0.9 -89.5 -45.8 -4.0 0.3 1.0 28 28 A c H <5S- 0 0 35 -4,-2.6 -2,-0.2 2,-0.7 -12,-0.1 0.316 101.4 -97.2-123.8 4.6 -5.9 -2.7 -0.2 29 29 A G << 0 0 52 -4,-2.6 -3,-0.2 -5,-0.5 -6,-0.0 0.564 360.0 360.0 80.1 6.2 -9.4 -1.4 -1.3 30 30 A R 0 0 191 -6,-0.5 -2,-0.7 -5,-0.3 -3,-0.2 -0.875 360.0 360.0 170.6 360.0 -10.5 -2.6 2.2