==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=23-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ZINC FINGER DNA BINDING DOMAIN 22-AUG-91 7ZNF . COMPND 2 MOLECULE: ZINC FINGER; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR M.KOCHOYAN,H.T.KEUTMANN,M.A.WEISS . 30 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2986.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 16 53.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 10.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 13.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 6 20.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A K 0 0 256 0, 0.0 2,-0.2 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -55.0 15.0 2.5 -4.7 2 2 A T - 0 0 97 11,-0.1 2,-0.3 13,-0.0 11,-0.2 -0.715 360.0-118.0-124.0 173.3 11.3 1.7 -4.7 3 3 A Y E -A 12 0A 125 9,-1.6 9,-2.9 -2,-0.2 2,-0.3 -0.891 24.6-172.8-119.8 150.9 8.7 1.2 -1.9 4 4 A Q E -A 11 0A 114 -2,-0.3 7,-0.2 7,-0.2 2,-0.1 -0.880 22.8-108.9-135.7 166.8 6.7 -1.8 -0.9 5 5 A C - 0 0 9 5,-2.1 7,-0.0 -2,-0.3 13,-0.0 -0.441 7.5-154.5 -92.2 168.2 3.8 -2.7 1.6 6 6 A Q S S+ 0 0 179 -2,-0.1 3,-0.1 3,-0.1 -1,-0.1 0.313 91.3 54.7-122.9 0.7 4.0 -4.8 4.8 7 7 A Y S S+ 0 0 151 1,-0.1 2,-0.2 3,-0.1 -2,-0.0 0.818 124.4 2.1 -99.7 -49.9 0.4 -6.0 4.9 8 8 A C S S- 0 0 44 2,-0.1 2,-0.3 18,-0.0 -1,-0.1 -0.432 87.0 -95.0-120.8-164.8 0.2 -7.5 1.4 9 9 A E S S+ 0 0 108 -2,-0.2 2,-0.3 -3,-0.1 -3,-0.1 -0.558 71.9 127.0-120.2 66.1 2.8 -7.9 -1.4 10 10 A K - 0 0 74 -2,-0.3 -5,-2.1 2,-0.0 2,-0.3 -0.862 43.8-143.9-118.5 155.1 2.2 -4.8 -3.6 11 11 A R E -A 4 0A 128 -2,-0.3 2,-0.3 -7,-0.2 -7,-0.2 -0.840 10.1-157.9-120.3 156.4 4.8 -2.2 -4.7 12 12 A F E -A 3 0A 25 -9,-2.9 -9,-1.6 -2,-0.3 2,-0.7 -0.918 23.1-130.6-134.2 159.8 4.6 1.6 -5.2 13 13 A A S S- 0 0 66 -2,-0.3 2,-0.2 -11,-0.2 4,-0.1 -0.740 89.4 -5.9-113.3 76.5 6.4 4.3 -7.1 14 14 A D S > S- 0 0 106 -2,-0.7 4,-0.8 2,-0.1 -11,-0.1 -0.500 85.3 -89.8 122.0 175.6 7.0 6.9 -4.3 15 15 A S T 4 S+ 0 0 77 -2,-0.2 4,-0.1 2,-0.1 -1,-0.1 -0.007 120.0 67.3-104.3 26.1 5.8 7.0 -0.7 16 16 A S T > S+ 0 0 62 2,-0.1 4,-1.2 3,-0.1 5,-0.2 0.733 96.8 48.2-107.6 -51.7 2.7 8.9 -1.9 17 17 A N H >> S+ 0 0 77 1,-0.2 4,-2.6 2,-0.2 3,-0.9 0.954 114.7 48.6 -55.7 -49.7 1.1 6.0 -3.9 18 18 A L H 3X S+ 0 0 30 -4,-0.8 4,-1.6 1,-0.2 -1,-0.2 0.932 101.2 64.4 -55.5 -49.5 1.7 3.8 -0.8 19 19 A K H 34 S+ 0 0 155 1,-0.2 -1,-0.2 2,-0.2 4,-0.2 0.788 114.2 32.1 -45.7 -35.5 0.1 6.4 1.5 20 20 A T H X< S+ 0 0 89 -4,-1.2 3,-2.6 -3,-0.9 -1,-0.2 0.907 104.8 73.1 -89.3 -50.1 -3.2 5.9 -0.3 21 21 A H H >X>S+ 0 0 6 -4,-2.6 4,-2.3 1,-0.3 3,-1.9 0.786 89.9 62.2 -25.5 -56.2 -2.9 2.2 -1.1 22 22 A I H 3X5S+ 0 0 47 -4,-1.6 4,-0.8 1,-0.3 -1,-0.3 0.791 105.2 43.3 -49.1 -38.7 -3.4 1.3 2.5 23 23 A K H <45S+ 0 0 112 -3,-2.6 -1,-0.3 -4,-0.2 -2,-0.2 -0.111 113.1 55.7-104.2 37.3 -7.0 2.7 2.7 24 24 A T H <45S+ 0 0 92 -3,-1.9 -2,-0.2 0, 0.0 3,-0.2 0.544 130.1 8.1-125.8 -50.9 -7.8 1.2 -0.7 25 25 A K H <5S+ 0 0 114 -4,-2.3 -3,-0.2 1,-0.1 2,-0.2 0.674 137.0 44.9-107.4 -29.7 -7.0 -2.5 0.0 26 26 A H << + 0 0 51 -4,-0.8 2,-1.0 -5,-0.7 -1,-0.1 -0.423 68.5 134.4-113.9 55.2 -6.4 -2.3 3.8 27 27 A S S > S- 0 0 27 3,-0.5 3,-1.5 -3,-0.2 -4,-0.1 -0.584 99.5 -63.4-103.9 68.2 -9.4 -0.2 4.8 28 28 A K T 3 S- 0 0 176 -2,-1.0 -1,-0.1 1,-0.3 -2,-0.1 0.942 92.2 -64.2 47.7 59.3 -10.3 -2.4 7.7 29 29 A E T 3 0 0 196 1,-0.2 -1,-0.3 -4,-0.1 -3,-0.1 0.659 360.0 360.0 40.2 26.9 -11.0 -5.3 5.4 30 30 A K < 0 0 193 -3,-1.5 -3,-0.5 0, 0.0 -1,-0.2 -0.605 360.0 360.0-133.4 360.0 -13.9 -3.3 3.8