==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=23-AUG-2013 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DNA-BINDING PROTEIN 21-FEB-13 3ZOB . COMPND 2 MOLECULE: HOMEOBOX PROTEIN ENGRAILED-2; . SOURCE 2 ORGANISM_SCIENTIFIC: GALLUS GALLUS; . AUTHOR L.CARLIER,S.BALAYSSAC,F.X.CANTRELLE,L.KHEMTEMOURIAN,G.CHASSA . 67 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5016.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 38 56.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 1 1.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 9.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 6.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 27 40.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 52 0, 0.0 7,-0.2 0, 0.0 43,-0.0 0.000 360.0 360.0 360.0-159.6 9.6 8.8 -10.2 2 2 A P + 0 0 75 0, 0.0 2,-0.1 0, 0.0 6,-0.1 0.469 360.0 54.3 -79.7 -1.4 8.7 10.8 -7.1 3 3 A M S S- 0 0 86 4,-0.3 3,-0.2 1,-0.2 11,-0.0 -0.036 101.3 -88.9-104.5-150.5 12.4 11.3 -6.1 4 4 A A S S+ 0 0 99 1,-0.3 2,-0.7 -2,-0.1 -1,-0.2 0.793 105.5 0.9 -87.6 -98.9 15.3 12.7 -8.1 5 5 A S S S+ 0 0 128 -3,-0.1 -1,-0.3 0, 0.0 2,-0.2 -0.877 102.6 112.8 -94.9 112.8 17.1 10.0 -10.1 6 6 A D - 0 0 46 -2,-0.7 2,-0.2 -3,-0.2 8,-0.1 -0.859 68.0 -63.6-161.7-173.4 15.1 6.8 -9.2 7 7 A K - 0 0 101 -2,-0.2 -4,-0.3 6,-0.1 7,-0.0 -0.516 51.3-110.7 -87.2 159.2 12.8 4.2 -10.7 8 8 A R - 0 0 165 -2,-0.2 2,-1.2 -7,-0.2 3,-0.2 -0.542 36.2 -98.4 -85.2 154.8 9.3 5.0 -12.0 9 9 A P S S+ 0 0 35 0, 0.0 4,-0.1 0, 0.0 -1,-0.1 -0.666 79.2 122.7 -73.8 96.1 6.2 3.9 -10.2 10 10 A R S S- 0 0 112 -2,-1.2 36,-0.3 2,-0.9 39,-0.1 0.565 96.9 -46.7-115.3 -91.9 5.5 0.8 -12.3 11 11 A T S S+ 0 0 89 -3,-0.2 35,-0.1 34,-0.1 2,-0.1 0.632 124.8 82.0-104.5 -45.9 5.3 -2.3 -10.1 12 12 A A S S- 0 0 34 -4,-0.1 -2,-0.9 1,-0.1 2,-0.2 -0.312 70.7-146.0 -71.2 141.1 8.5 -1.4 -8.3 13 13 A F - 0 0 35 -4,-0.1 2,-0.2 -2,-0.1 -6,-0.1 -0.544 4.4-144.1 -99.3 165.8 8.4 1.1 -5.5 14 14 A T > - 0 0 5 -2,-0.2 4,-2.3 -8,-0.1 3,-0.3 -0.584 39.3 -88.0-118.9-175.2 11.0 3.6 -4.4 15 15 A A H > S+ 0 0 60 1,-0.2 4,-1.2 -2,-0.2 -2,-0.0 0.767 126.7 48.1 -70.5 -27.2 12.0 4.8 -0.9 16 16 A E H > S+ 0 0 103 2,-0.2 4,-0.9 3,-0.1 -1,-0.2 0.684 111.6 49.8 -86.5 -21.5 9.3 7.5 -0.8 17 17 A Q H > S+ 0 0 0 -3,-0.3 4,-1.3 2,-0.2 3,-0.3 0.931 112.6 46.1 -81.2 -48.5 6.6 5.2 -2.0 18 18 A L H X S+ 0 0 70 -4,-2.3 4,-1.7 1,-0.2 -2,-0.2 0.826 106.1 62.2 -56.1 -39.8 7.4 2.5 0.6 19 19 A Q H X S+ 0 0 107 -4,-1.2 4,-1.1 1,-0.2 -1,-0.2 0.889 103.8 47.4 -55.9 -47.7 7.6 5.2 3.3 20 20 A R H X S+ 0 0 81 -4,-0.9 4,-1.3 -3,-0.3 3,-0.2 0.876 111.3 50.3 -61.3 -44.4 4.0 6.1 2.9 21 21 A L H X S+ 0 0 0 -4,-1.3 4,-2.2 1,-0.2 -1,-0.2 0.777 107.2 53.5 -71.1 -29.1 2.8 2.5 2.9 22 22 A K H X S+ 0 0 79 -4,-1.7 4,-1.3 2,-0.2 -1,-0.2 0.770 106.6 53.3 -74.8 -28.3 4.7 1.6 6.1 23 23 A A H X S+ 0 0 59 -4,-1.1 4,-0.7 -3,-0.2 -2,-0.2 0.822 113.5 42.6 -74.2 -33.6 3.1 4.6 7.9 24 24 A E H >X S+ 0 0 31 -4,-1.3 4,-1.9 2,-0.2 3,-0.6 0.906 111.5 55.1 -74.3 -45.0 -0.4 3.2 6.9 25 25 A F H 3< S+ 0 0 36 -4,-2.2 -2,-0.2 1,-0.2 -3,-0.2 0.776 99.4 62.5 -58.9 -35.7 0.6 -0.4 7.7 26 26 A Q H 3< S+ 0 0 149 -4,-1.3 -1,-0.2 2,-0.1 3,-0.2 0.882 117.8 25.3 -62.1 -43.7 1.6 0.6 11.3 27 27 A T H << S+ 0 0 113 -4,-0.7 2,-0.6 -3,-0.6 -2,-0.2 0.963 137.0 18.1 -80.3 -71.8 -1.9 1.8 12.2 28 28 A N < + 0 0 84 -4,-1.9 -1,-0.3 1,-0.1 -2,-0.1 -0.927 48.5 177.3-113.0 114.9 -4.2 -0.2 9.8 29 29 A R + 0 0 65 -2,-0.6 2,-1.4 -3,-0.2 -1,-0.1 0.682 68.3 94.1 -78.3 -21.7 -2.9 -3.3 8.1 30 30 A Y - 0 0 151 -3,-0.1 2,-0.3 -5,-0.1 -1,-0.1 -0.607 61.5-174.2 -79.3 89.2 -6.4 -3.6 6.7 31 31 A L - 0 0 19 -2,-1.4 2,-0.2 20,-0.1 -2,-0.1 -0.656 12.5-145.3 -82.9 142.2 -6.1 -1.8 3.4 32 32 A T > - 0 0 63 -2,-0.3 4,-1.9 1,-0.1 5,-0.1 -0.638 21.4-117.0-107.9 163.8 -9.4 -1.4 1.6 33 33 A E T 4 S+ 0 0 154 -2,-0.2 4,-0.4 1,-0.2 -1,-0.1 0.668 115.3 50.9 -72.7 -18.2 -10.2 -1.5 -2.1 34 34 A Q T 4 S+ 0 0 127 2,-0.2 4,-0.4 3,-0.1 -1,-0.2 0.850 113.7 39.6 -90.2 -41.1 -11.3 2.1 -1.9 35 35 A R T >> S+ 0 0 84 1,-0.2 4,-1.3 2,-0.2 3,-0.9 0.843 111.8 59.3 -77.9 -34.2 -8.3 3.6 -0.1 36 36 A R H 3X S+ 0 0 35 -4,-1.9 4,-1.4 1,-0.2 -1,-0.2 0.778 99.4 59.2 -56.1 -32.7 -6.0 1.3 -2.3 37 37 A Q H 3> S+ 0 0 98 -4,-0.4 4,-0.5 1,-0.2 -1,-0.2 0.739 105.9 47.3 -69.8 -27.2 -7.5 3.1 -5.3 38 38 A S H <> S+ 0 0 53 -3,-0.9 4,-1.5 -4,-0.4 -2,-0.2 0.743 108.6 52.8 -88.1 -28.6 -6.3 6.4 -4.0 39 39 A L H X S+ 0 0 6 -4,-1.3 4,-1.9 1,-0.2 5,-0.5 0.803 108.3 53.7 -73.7 -29.6 -2.8 5.1 -3.2 40 40 A A H < S+ 0 0 10 -4,-1.4 5,-0.4 1,-0.2 4,-0.3 0.767 109.6 47.8 -72.2 -30.3 -2.8 3.9 -6.8 41 41 A Q H < S+ 0 0 140 -4,-0.5 -2,-0.2 3,-0.2 -1,-0.2 0.883 118.1 37.5 -76.0 -41.4 -3.6 7.4 -8.1 42 42 A E H < S+ 0 0 128 -4,-1.5 -2,-0.2 1,-0.2 -3,-0.2 0.853 119.7 41.0 -94.0 -39.0 -1.1 9.3 -6.1 43 43 A L S < S- 0 0 24 -4,-1.9 -1,-0.2 -5,-0.2 -3,-0.2 0.823 111.4-123.9 -71.9 -32.1 2.0 7.1 -6.1 44 44 A G S S+ 0 0 39 -5,-0.5 -3,-0.2 -4,-0.3 -4,-0.2 0.758 70.6 118.9 93.2 34.4 1.0 6.5 -9.7 45 45 A L - 0 0 13 -6,-0.4 2,-0.2 -5,-0.4 -1,-0.1 -0.076 66.0-101.0-100.1-158.6 0.8 2.7 -9.4 46 46 A N > - 0 0 96 -36,-0.3 4,-0.6 -2,-0.1 3,-0.1 -0.659 31.9-108.3-114.6 179.8 -2.1 0.5 -10.0 47 47 A E H >> S+ 0 0 71 -2,-0.2 4,-1.3 1,-0.2 3,-0.6 0.881 114.4 61.0 -72.4 -40.6 -4.2 -1.1 -7.2 48 48 A S H 3> S+ 0 0 67 1,-0.2 4,-1.3 2,-0.2 -1,-0.2 0.677 97.3 57.5 -64.3 -26.6 -2.8 -4.6 -7.9 49 49 A Q H 3> S+ 0 0 34 2,-0.2 4,-1.1 1,-0.2 -1,-0.2 0.868 112.4 39.0 -73.8 -39.4 0.8 -3.6 -7.1 50 50 A I H < S+ 0 0 69 -4,-1.7 3,-1.1 1,-0.2 4,-0.4 0.862 110.1 49.2 -66.6 -42.3 3.7 -7.8 4.7 58 58 A R H 3< S+ 0 0 67 -4,-1.6 3,-0.4 1,-0.2 -1,-0.2 0.694 105.9 59.4 -68.4 -22.8 0.9 -9.3 6.7 59 59 A A T 3< S+ 0 0 29 -4,-0.6 8,-0.4 -3,-0.2 -1,-0.2 0.464 91.6 69.6 -86.8 -3.0 2.3 -12.8 5.8 60 60 A K S < S+ 0 0 161 -3,-1.1 -1,-0.2 -4,-0.2 -2,-0.2 0.787 84.1 89.2 -80.5 -30.6 5.6 -11.9 7.6 61 61 A I S S- 0 0 87 -4,-0.4 2,-1.5 -3,-0.4 6,-0.2 -0.049 95.0 -96.5 -69.4 166.4 4.0 -12.0 11.0 62 62 A K S S+ 0 0 204 5,-0.2 2,-0.1 4,-0.0 -1,-0.1 -0.679 72.1 140.0 -87.7 82.7 3.7 -15.0 13.4 63 63 A K - 0 0 92 -2,-1.5 -4,-0.0 2,-0.3 3,-0.0 -0.308 61.9 -95.4-110.1-167.1 0.1 -15.8 12.4 64 64 A A S S+ 0 0 98 -2,-0.1 -1,-0.1 0, 0.0 2,-0.1 0.983 99.5 35.5 -81.4 -72.5 -1.6 -19.2 11.9 65 65 A T S S+ 0 0 92 -3,-0.0 2,-0.7 1,-0.0 -2,-0.3 -0.294 119.8 12.9 -81.5 166.8 -1.6 -20.0 8.2 66 66 A Q 0 0 159 -4,-0.1 -7,-0.1 -2,-0.1 -6,-0.1 -0.572 360.0 360.0 68.3-105.7 1.4 -19.0 5.9 67 67 A A 0 0 67 -2,-0.7 -5,-0.2 -8,-0.4 -7,-0.1 0.566 360.0 360.0 -91.9 360.0 4.0 -18.1 8.4