==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=21-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER SIGNALING PROTEIN 19-MAY-05 1ZR7 . COMPND 2 MOLECULE: HUNTINGTIN-INTERACTING PROTEIN HYPA/FBP11; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR Y.KATO,Y.HINO,M.TANOKURA,RIKEN STRUCTURAL . 30 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2806.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 17 56.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 11 36.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 10.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 10 A G 0 0 126 0, 0.0 16,-0.0 0, 0.0 3,-0.0 0.000 360.0 360.0 360.0 73.0 2.1 0.0 -1.2 2 11 A S + 0 0 42 2,-0.0 16,-2.8 0, 0.0 2,-0.6 0.064 360.0 122.6-141.5 23.2 2.5 -3.7 -2.2 3 12 A W E -A 17 0A 110 14,-0.2 2,-0.4 15,-0.1 14,-0.3 -0.822 46.1-155.3 -95.9 118.0 0.5 -4.0 -5.3 4 13 A T E -A 16 0A 57 12,-2.7 12,-2.5 -2,-0.6 2,-0.8 -0.757 11.7-133.7 -94.9 136.3 2.4 -5.2 -8.4 5 14 A E E +A 15 0A 121 -2,-0.4 2,-0.4 10,-0.2 10,-0.2 -0.787 35.8 163.5 -92.4 109.2 1.3 -4.4 -11.9 6 15 A H E -A 14 0A 116 8,-2.5 8,-2.2 -2,-0.8 2,-0.4 -0.990 23.8-150.6-130.8 128.2 1.3 -7.5 -14.1 7 16 A K E -A 13 0A 135 -2,-0.4 6,-0.3 6,-0.3 -2,-0.0 -0.782 25.1-112.4 -98.8 139.4 -0.4 -7.9 -17.4 8 17 A S E >> -A 12 0A 23 4,-2.7 3,-1.7 -2,-0.4 4,-0.6 -0.122 30.2-106.3 -62.8 163.1 -1.6 -11.3 -18.7 9 18 A P T 34 S+ 0 0 145 0, 0.0 -1,-0.1 0, 0.0 -2,-0.0 0.501 120.6 59.0 -69.8 -2.9 0.0 -13.1 -21.7 10 19 A D T 34 S- 0 0 150 2,-0.1 -2,-0.1 0, 0.0 -3,-0.0 0.442 129.4 -89.7-103.8 -4.5 -3.1 -12.2 -23.6 11 20 A G T <4 S+ 0 0 53 -3,-1.7 2,-0.4 1,-0.2 -4,-0.0 0.886 79.5 136.3 95.9 52.9 -2.7 -8.4 -23.1 12 21 A R E < -A 8 0A 152 -4,-0.6 -4,-2.7 2,-0.0 2,-0.6 -0.856 44.5-145.8-135.9 99.7 -4.6 -7.7 -19.9 13 22 A T E +A 7 0A 75 -2,-0.4 2,-0.3 -6,-0.3 -6,-0.3 -0.503 30.0 173.6 -67.2 111.8 -3.0 -5.4 -17.3 14 23 A Y E -A 6 0A 62 -8,-2.2 -8,-2.5 -2,-0.6 2,-0.4 -0.924 26.5-130.8-123.8 148.3 -4.1 -6.7 -13.9 15 24 A Y E -AB 5 24A 36 9,-2.2 9,-3.0 -2,-0.3 2,-0.4 -0.800 18.3-167.9-100.1 137.9 -3.0 -5.7 -10.4 16 25 A Y E -AB 4 23A 64 -12,-2.5 -12,-2.7 -2,-0.4 2,-0.5 -0.973 14.4-141.1-129.7 119.6 -1.9 -8.2 -7.8 17 26 A N E >> -AB 3 22A 6 5,-1.8 4,-0.9 -2,-0.4 5,-0.8 -0.652 6.2-164.2 -81.0 125.4 -1.5 -7.4 -4.1 18 27 A T T 45S+ 0 0 62 -16,-2.8 -1,-0.1 -2,-0.5 -15,-0.1 0.630 89.0 58.1 -81.6 -14.6 1.5 -9.1 -2.5 19 28 A E T 45S+ 0 0 143 -17,-0.3 -1,-0.2 1,-0.1 -16,-0.1 0.876 123.5 20.0 -81.4 -41.1 0.1 -8.4 1.0 20 29 A T T 45S- 0 0 79 2,-0.1 -2,-0.2 0, 0.0 -1,-0.1 0.427 99.0-129.2-106.4 -3.5 -3.2 -10.2 0.5 21 30 A K T <5 + 0 0 135 -4,-0.9 2,-0.2 1,-0.2 -3,-0.2 0.859 63.9 135.0 56.7 37.0 -2.0 -12.3 -2.4 22 31 A Q E < -B 17 0A 129 -5,-0.8 -5,-1.8 2,-0.0 2,-0.3 -0.668 43.0-147.4-112.3 168.5 -5.0 -11.3 -4.4 23 32 A S E +B 16 0A 72 -7,-0.3 2,-0.3 -2,-0.2 -7,-0.3 -0.984 16.0 172.2-138.3 148.1 -5.5 -10.1 -8.0 24 33 A T E -B 15 0A 25 -9,-3.0 -9,-2.2 -2,-0.3 -2,-0.0 -0.960 35.7-135.4-149.3 164.9 -7.9 -7.7 -9.7 25 34 A W S S+ 0 0 146 -2,-0.3 2,-0.3 -11,-0.2 -1,-0.1 0.596 88.0 69.3 -97.2 -15.6 -8.6 -6.0 -13.0 26 35 A E S S- 0 0 96 1,-0.1 -11,-0.2 -11,-0.1 4,-0.1 -0.753 96.5 -88.3-105.4 152.4 -9.2 -2.6 -11.5 27 36 A K > - 0 0 111 -2,-0.3 3,-0.8 1,-0.1 -1,-0.1 -0.025 37.3-112.2 -51.6 158.5 -6.7 -0.2 -9.8 28 37 A P T 3 S+ 0 0 60 0, 0.0 -1,-0.1 0, 0.0 -2,-0.0 0.633 115.2 61.2 -69.7 -13.7 -6.1 -0.6 -6.1 29 38 A D T 3 0 0 114 0, 0.0 -2,-0.1 0, 0.0 0, 0.0 -0.272 360.0 360.0-108.2 44.8 -7.7 2.8 -5.6 30 39 A D < 0 0 161 -3,-0.8 -4,-0.0 -4,-0.1 0, 0.0 -0.554 360.0 360.0 -75.5 360.0 -11.1 1.8 -7.0