==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=21-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER POTASSIUM CHANNEL 15-NOV-96 1ZTN . COMPND 2 MOLECULE: POTASSIUM CHANNEL PROTEIN RAW3; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR C.ANTZ,M.GEYER,B.FAKLER,M.SCHOTT,R.FRANK,H.R.GUY, . 30 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2280.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 12 40.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 13.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 92 0, 0.0 2,-0.3 0, 0.0 7,-0.1 0.000 360.0 360.0 360.0 88.5 -6.5 2.5 5.5 2 2 A I + 0 0 169 4,-0.1 2,-0.4 5,-0.1 23,-0.1 -0.691 360.0 143.5-136.9 84.4 -3.5 1.5 7.8 3 3 A S - 0 0 42 -2,-0.3 24,-0.3 21,-0.1 4,-0.2 -0.964 38.7-154.4-123.9 138.9 -1.9 -1.8 6.9 4 4 A S S S+ 0 0 79 -2,-0.4 21,-0.1 2,-0.1 3,-0.0 -0.017 96.4 25.6-100.5 31.8 1.8 -2.6 7.1 5 5 A V S S- 0 0 99 19,-0.2 19,-1.0 18,-0.1 2,-0.2 0.345 135.3 -1.8-156.3 -37.9 1.7 -5.3 4.4 6 6 A C B S+a 24 0A 66 17,-0.1 19,-0.2 11,-0.0 -2,-0.1 -0.749 70.3 128.2-167.4 113.2 -1.3 -4.6 2.0 7 7 A V S S+ 0 0 21 17,-1.4 3,-0.4 9,-0.7 4,-0.3 0.476 86.4 14.6-132.7 -73.8 -3.9 -1.8 2.4 8 8 A S S S+ 0 0 0 8,-1.7 5,-0.2 16,-0.5 17,-0.1 0.040 87.5 120.1 -97.2 28.0 -4.4 0.4 -0.8 9 9 A S S S- 0 0 40 15,-0.2 -1,-0.2 1,-0.2 8,-0.1 0.935 106.0 -22.6 -58.0 -43.1 -2.7 -2.2 -3.0 10 10 A Y S S+ 0 0 193 -3,-0.4 2,-1.8 2,-0.0 -1,-0.2 0.132 96.4 125.6-155.6 24.0 -5.9 -2.6 -5.0 11 11 A R S S- 0 0 177 -4,-0.3 3,-0.1 2,-0.2 -2,-0.1 -0.207 102.0 -83.0 -81.8 49.6 -8.7 -1.4 -2.7 12 12 A G S S+ 0 0 68 -2,-1.8 2,-0.3 1,-0.2 -1,-0.2 0.846 111.2 93.4 54.0 31.9 -9.8 1.1 -5.4 13 13 A R - 0 0 122 -5,-0.2 -1,-0.2 -6,-0.1 -2,-0.2 -0.959 60.4-158.0-146.9 164.2 -7.0 3.4 -4.1 14 14 A K + 0 0 126 -2,-0.3 3,-0.3 -3,-0.1 -5,-0.1 -0.064 67.8 93.1-137.5 35.9 -3.3 4.2 -4.7 15 15 A S S S+ 0 0 48 1,-0.2 2,-1.7 9,-0.1 10,-0.1 0.897 90.9 32.1 -92.2 -72.0 -2.2 5.7 -1.4 16 16 A G S S+ 0 0 0 9,-0.1 -8,-1.7 1,-0.1 -9,-0.7 -0.612 104.0 86.3 -86.0 81.5 -0.7 2.8 0.7 17 17 A N + 0 0 27 -2,-1.7 7,-0.2 -3,-0.3 -1,-0.1 -0.286 47.2 177.2-178.2 85.8 0.6 0.8 -2.2 18 18 A K - 0 0 17 5,-0.7 12,-0.1 1,-0.2 8,-0.0 0.020 67.3 -39.0 -77.5-161.9 4.1 1.3 -3.8 19 19 A P > - 0 0 73 0, 0.0 3,-0.9 0, 0.0 -1,-0.2 -0.442 67.3-110.4 -62.7 136.8 5.0 -1.2 -6.6 20 20 A P T 3 S+ 0 0 118 0, 0.0 4,-0.2 0, 0.0 -2,-0.1 0.589 107.9 84.3 -41.2 -11.8 3.7 -4.7 -5.7 21 21 A S T 3 S+ 0 0 108 2,-0.1 3,-0.1 3,-0.0 -3,-0.0 0.994 98.9 16.4 -59.1 -69.6 7.5 -5.5 -5.3 22 22 A K S < S- 0 0 104 -3,-0.9 2,-0.5 1,-0.2 6,-0.0 0.393 123.6 -34.8 -81.7-139.6 8.1 -4.3 -1.6 23 23 A T - 0 0 26 2,-0.1 2,-2.1 1,-0.1 -5,-0.7 -0.752 50.8-141.8 -87.3 125.2 5.3 -3.5 0.9 24 24 A C B S+a 6 0A 11 -19,-1.0 -17,-1.4 -2,-0.5 -16,-0.5 -0.323 70.3 100.4 -84.5 59.7 2.2 -2.0 -0.7 25 25 A L S > >S- 0 0 0 -2,-2.1 3,-1.6 -19,-0.2 5,-1.1 -0.975 84.6-117.2-139.6 151.8 1.7 0.4 2.2 26 26 A K T 3 5S+ 0 0 104 -2,-0.3 -22,-0.1 1,-0.3 -10,-0.1 0.815 109.4 73.7 -59.3 -27.8 2.5 4.1 2.8 27 27 A E T 3 5S+ 0 0 95 -24,-0.3 -1,-0.3 3,-0.2 -23,-0.1 0.795 107.5 26.5 -57.2 -31.1 4.9 3.0 5.5 28 28 A E T < 5S- 0 0 84 -3,-1.6 -4,-0.1 -5,-0.2 -11,-0.1 0.221 136.0 -27.8-107.2-130.7 7.4 1.7 3.0 29 29 A M T 5 0 0 124 1,-0.3 -3,-0.1 -6,-0.2 -5,-0.1 0.758 360.0 360.0 -61.3 -21.0 8.0 2.8 -0.7 30 30 A A < 0 0 47 -5,-1.1 -1,-0.3 -7,-0.5 -4,-0.2 0.522 360.0 360.0 -79.7 360.0 4.3 3.9 -0.9