==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=21-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER POTASSIUM CHANNEL 15-NOV-96 1ZTO . COMPND 2 MOLECULE: POTASSIUM CHANNEL PROTEIN RCK4; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR C.ANTZ,M.GEYER,B.FAKLER,M.SCHOTT,R.FRANK,H.R.GUY, . 37 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4365.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 17 45.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 10.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 13.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 21.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 242 0, 0.0 2,-0.2 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 142.5 16.8 5.3 16.1 2 2 A E - 0 0 155 1,-0.1 2,-0.1 3,-0.0 0, 0.0 -0.591 360.0 -94.8 -94.5 159.2 13.3 4.1 15.1 3 3 A V - 0 0 86 -2,-0.2 2,-1.2 1,-0.1 -1,-0.1 -0.376 40.6-107.9 -69.9 149.8 10.9 2.2 17.5 4 4 A A + 0 0 104 -2,-0.1 2,-0.6 2,-0.0 -1,-0.1 -0.646 51.7 162.9 -81.7 98.4 10.9 -1.6 17.4 5 5 A M - 0 0 159 -2,-1.2 2,-0.4 2,-0.0 -2,-0.0 -0.900 11.9-177.6-121.4 104.8 7.6 -2.5 15.6 6 6 A V + 0 0 146 -2,-0.6 2,-0.3 2,-0.0 -2,-0.0 -0.834 11.1 157.4-103.4 138.0 7.4 -6.1 14.3 7 7 A S + 0 0 119 -2,-0.4 -2,-0.0 1,-0.0 0, 0.0 -0.974 18.0 171.9-157.7 141.3 4.4 -7.3 12.3 8 8 A A + 0 0 85 -2,-0.3 2,-1.9 3,-0.0 -2,-0.0 -0.386 8.5 165.6-150.8 65.5 3.7 -10.1 9.8 9 9 A E + 0 0 159 1,-0.1 2,-0.2 5,-0.1 -2,-0.0 -0.478 52.6 87.8 -84.0 72.0 -0.1 -10.4 9.1 10 10 A S + 0 0 65 -2,-1.9 -1,-0.1 4,-0.1 0, 0.0 -0.605 27.9 131.5-169.6 101.8 0.3 -12.6 5.9 11 11 A S S S- 0 0 133 -2,-0.2 -1,-0.1 0, 0.0 -2,-0.0 0.072 87.1 -0.8-143.3 26.1 0.5 -16.4 5.9 12 12 A G S S- 0 0 77 0, 0.0 -2,-0.0 0, 0.0 0, 0.0 -0.108 134.2 -13.8-173.3 -76.8 -2.0 -17.5 3.2 13 13 A C S > S+ 0 0 98 1,-0.0 3,-0.5 2,-0.0 -3,-0.0 -0.059 95.0 106.1-139.6 35.6 -4.0 -14.8 1.3 14 14 A N T 3 S+ 0 0 77 1,-0.2 3,-0.3 2,-0.1 -4,-0.1 0.787 82.1 50.7 -86.7 -27.6 -3.6 -11.6 3.4 15 15 A S T 3 + 0 0 88 1,-0.2 -1,-0.2 2,-0.0 7,-0.1 -0.121 67.6 132.7-100.1 37.9 -1.2 -10.0 0.8 16 16 A H < + 0 0 125 -3,-0.5 -1,-0.2 2,-0.0 3,-0.1 0.704 39.3 112.9 -61.8 -16.7 -3.6 -10.7 -2.1 17 17 A M S S- 0 0 95 -3,-0.3 3,-0.1 1,-0.1 5,-0.1 -0.251 83.1 -95.6 -56.9 144.9 -3.0 -7.0 -3.2 18 18 A P >> - 0 0 95 0, 0.0 3,-2.0 0, 0.0 4,-0.6 -0.322 48.1 -93.1 -64.2 143.6 -1.1 -6.6 -6.5 19 19 A Y T 34 S+ 0 0 241 1,-0.2 -3,-0.0 2,-0.2 -4,-0.0 -0.271 113.6 32.4 -56.3 136.3 2.7 -6.2 -6.1 20 20 A G T >4 S+ 0 0 37 -3,-0.1 3,-0.6 0, 0.0 4,-0.3 0.025 97.3 86.7 102.8 -27.6 3.6 -2.4 -6.1 21 21 A Y G X> S+ 0 0 145 -3,-2.0 4,-1.3 1,-0.2 3,-1.1 0.906 85.6 54.0 -72.0 -38.6 0.4 -1.4 -4.3 22 22 A A G 3< S+ 0 0 83 -4,-0.6 4,-0.3 1,-0.2 -1,-0.2 0.585 112.7 46.6 -70.8 -6.4 1.9 -2.0 -0.9 23 23 A A G <4 S+ 0 0 64 -3,-0.6 4,-0.5 2,-0.1 -1,-0.2 0.404 103.8 60.5-114.3 0.1 4.8 0.3 -2.0 24 24 A Q T <> S+ 0 0 78 -3,-1.1 4,-2.1 -4,-0.3 5,-0.3 0.800 98.6 55.6 -95.5 -34.0 2.6 3.2 -3.5 25 25 A A H X S+ 0 0 56 -4,-1.3 4,-2.6 2,-0.2 5,-0.2 0.977 116.6 35.2 -63.2 -54.1 0.7 4.0 -0.2 26 26 A R H > S+ 0 0 165 -4,-0.3 4,-2.6 1,-0.2 -1,-0.2 0.879 116.0 56.7 -68.8 -35.4 3.9 4.7 1.8 27 27 A A H 4 S+ 0 0 39 -4,-0.5 4,-0.4 1,-0.2 -1,-0.2 0.876 116.5 35.7 -64.6 -34.3 5.7 6.1 -1.3 28 28 A R H X S+ 0 0 170 -4,-2.1 4,-0.6 2,-0.2 3,-0.4 0.834 117.2 52.5 -86.7 -34.2 2.9 8.7 -1.6 29 29 A E H >X S+ 0 0 96 -4,-2.6 3,-0.9 -5,-0.3 4,-0.8 0.863 101.6 60.8 -69.3 -34.5 2.4 9.1 2.1 30 30 A R H 3X S+ 0 0 111 -4,-2.6 4,-3.5 1,-0.2 3,-0.4 0.805 94.1 65.2 -64.0 -26.4 6.1 9.8 2.6 31 31 A E H 34 S+ 0 0 79 -3,-0.4 4,-0.3 -4,-0.4 -1,-0.2 0.837 94.7 58.6 -66.3 -30.0 5.7 12.9 0.3 32 32 A R H << S+ 0 0 197 -3,-0.9 -1,-0.2 -4,-0.6 -2,-0.2 0.846 119.8 27.9 -68.6 -31.6 3.4 14.6 2.9 33 33 A L H < S+ 0 0 105 -4,-0.8 -2,-0.2 -3,-0.4 -1,-0.1 0.834 129.8 39.1 -96.7 -41.4 6.2 14.4 5.6 34 34 A A S < S+ 0 0 53 -4,-3.5 2,-0.7 -5,-0.2 -2,-0.2 0.091 76.4 159.1 -96.1 24.1 9.3 14.5 3.3 35 35 A H + 0 0 136 -4,-0.3 -4,-0.1 1,-0.2 -3,-0.1 -0.240 9.6 144.5 -49.8 96.1 7.8 17.1 1.0 36 36 A S 0 0 105 -2,-0.7 -1,-0.2 1,-0.1 -5,-0.0 0.430 360.0 360.0-117.9 -2.3 11.0 18.5 -0.6 37 37 A X 0 0 297 -6,-0.1 -1,-0.1 -3,-0.1 -2,-0.1 -0.474 360.0 360.0-115.4 360.0 9.8 19.1 -4.2