==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=21-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE 17-JUN-96 1ZWF . COMPND 2 MOLECULE: PARATHYROID HORMONE; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR P.ROESCH,U.C.MARX . 34 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3052.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 19 55.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 11.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 13 38.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 2 A E 0 0 137 0, 0.0 2,-0.3 0, 0.0 9,-0.0 0.000 360.0 360.0 360.0 133.5 7.6 4.3 6.5 2 3 A I > - 0 0 80 1,-0.1 4,-2.5 5,-0.1 5,-0.2 -0.874 360.0-113.8-123.8 158.0 4.0 3.3 7.2 3 4 A Q H > S+ 0 0 121 -2,-0.3 4,-0.6 1,-0.2 -1,-0.1 0.866 122.2 33.4 -59.0 -35.1 2.5 0.1 8.9 4 5 A L H 4 S+ 0 0 33 2,-0.1 5,-0.4 1,-0.1 -1,-0.2 0.787 116.2 56.2 -91.0 -30.3 0.9 -0.8 5.4 5 6 A M H 4 S+ 0 0 83 1,-0.2 -2,-0.2 3,-0.1 4,-0.2 0.854 98.9 62.2 -69.7 -34.7 3.7 0.6 3.2 6 7 A H H < S+ 0 0 110 -4,-2.5 -1,-0.2 2,-0.1 -2,-0.1 0.934 107.6 45.3 -57.8 -47.3 6.4 -1.6 5.0 7 8 A N S < S+ 0 0 121 -4,-0.6 2,-1.9 -5,-0.2 -5,-0.1 -0.449 112.5 19.3 -93.2 169.8 4.7 -4.8 3.8 8 9 A L S S+ 0 0 85 -2,-0.1 2,-0.5 1,-0.1 -3,-0.1 -0.489 134.2 25.0 72.9 -77.6 3.4 -5.7 0.3 9 10 A G + 0 0 4 -2,-1.9 -2,-0.1 -5,-0.4 -1,-0.1 -0.680 64.7 156.6-119.8 80.5 5.3 -3.0 -1.7 10 11 A K S S+ 0 0 98 -2,-0.5 2,-0.4 1,-0.2 -1,-0.2 0.963 79.6 22.6 -66.0 -48.8 8.5 -2.1 0.3 11 12 A H S S+ 0 0 155 -5,-0.1 2,-0.3 2,-0.0 -1,-0.2 -0.911 84.2 171.8-118.5 142.9 10.3 -0.8 -2.9 12 13 A L - 0 0 30 -2,-0.4 2,-0.3 -3,-0.1 -3,-0.0 -0.966 31.0-140.4-150.8 169.1 8.4 0.3 -6.0 13 14 A N >> - 0 0 63 -2,-0.3 3,-3.7 1,-0.1 4,-1.7 -0.964 44.2-102.4-128.6 140.9 8.3 1.8 -9.5 14 15 A S H 3> S+ 0 0 97 -2,-0.3 4,-1.6 1,-0.3 -1,-0.1 0.781 122.8 48.4 -33.5 -47.8 5.5 4.2 -10.7 15 16 A M H 34 S+ 0 0 129 1,-0.2 4,-0.3 2,-0.2 -1,-0.3 0.465 112.3 49.9 -81.1 6.5 3.8 1.4 -12.8 16 17 A E H <> S+ 0 0 81 -3,-3.7 4,-2.9 2,-0.1 -2,-0.2 0.744 107.2 53.1-105.3 -34.8 3.9 -1.0 -9.8 17 18 A R H X S+ 0 0 107 -4,-1.7 4,-3.3 2,-0.2 5,-0.2 0.907 101.5 61.8 -62.5 -44.4 2.4 1.6 -7.3 18 19 A V H X S+ 0 0 55 -4,-1.6 4,-0.6 -5,-0.3 -1,-0.2 0.912 115.8 30.1 -50.7 -47.7 -0.5 2.0 -9.7 19 20 A E H >> S+ 0 0 94 -4,-0.3 4,-1.4 2,-0.2 3,-0.5 0.862 118.1 58.6 -81.7 -34.7 -1.5 -1.7 -9.4 20 21 A W H 3X S+ 0 0 32 -4,-2.9 4,-3.4 1,-0.2 -2,-0.2 0.856 97.5 61.8 -58.1 -38.5 -0.2 -1.8 -5.7 21 22 A L H 3X S+ 0 0 105 -4,-3.3 4,-2.1 2,-0.2 -1,-0.2 0.883 99.1 54.9 -59.8 -37.2 -2.6 1.0 -4.9 22 23 A R H S+ 0 0 21 -4,-3.4 4,-2.0 1,-0.2 5,-0.8 0.892 102.8 51.2 -54.5 -40.2 -3.2 -1.2 -0.8 25 26 A L H <5S+ 0 0 118 -4,-2.1 4,-0.3 1,-0.2 -1,-0.2 0.923 111.3 47.4 -64.6 -40.8 -7.0 -0.1 -0.6 26 27 A Q H <5S+ 0 0 116 -4,-1.3 -2,-0.2 1,-0.2 -1,-0.2 0.800 109.6 56.6 -69.0 -28.4 -7.9 -3.8 0.1 27 28 A D H <5S- 0 0 52 -4,-2.0 -2,-0.2 2,-0.1 -1,-0.2 0.942 136.6 -10.7 -70.4 -50.6 -5.1 -3.9 2.8 28 29 A V T <5S+ 0 0 28 -4,-2.0 2,-0.4 1,-0.1 3,-0.4 0.693 75.1 161.3-123.6 -32.3 -6.2 -1.0 5.0 29 30 A H S S+ 0 0 121 -2,-0.4 3,-3.4 -5,-0.1 -1,-0.2 0.855 73.9 165.1-102.1 -50.6 -10.6 2.9 6.2 31 32 A F G > S- 0 0 78 -3,-0.4 3,-1.8 1,-0.3 -2,-0.1 0.721 83.6 -77.3 38.9 29.5 -9.3 0.9 9.3 32 33 A V G 3 S- 0 0 121 1,-0.3 -1,-0.3 2,-0.0 -3,-0.1 0.737 70.9 -88.3 56.5 18.9 -10.4 3.9 11.4 33 34 A A G < 0 0 77 -3,-3.4 -1,-0.3 1,-0.2 -2,-0.2 0.872 360.0 360.0 46.2 40.9 -7.1 5.5 9.9 34 35 A L < 0 0 166 -3,-1.8 -1,-0.2 -4,-0.2 -4,-0.0 -0.819 360.0 360.0 -93.0 360.0 -5.3 3.9 13.0