==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=7-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER IMMUNE SYSTEM 26-NOV-08 2ZW0 . COMPND 2 MOLECULE: PROTEIN LG; . SOURCE 2 ORGANISM_SCIENTIFIC: FINEGOLDIA MAGNA; . AUTHOR H.WATANABE,H.MATSUMARU,T.ODAHARA,K.SUTO,S.HONDA . 57 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3876.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 44 77.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 6 10.5 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 15 26.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 8.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 7.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 12 21.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 0 A M 0 0 162 0, 0.0 21,-0.2 0, 0.0 22,-0.1 0.000 360.0 360.0 360.0 154.2 0.6 2.2 17.1 2 1 A D E -A 21 0A 83 19,-0.7 19,-2.2 20,-0.1 2,-0.5 -0.263 360.0-123.4 -65.4 149.5 2.5 -1.0 17.7 3 2 A T E -A 20 0A 64 17,-0.2 2,-0.4 19,-0.1 17,-0.2 -0.850 23.0-165.3 -99.9 130.3 3.3 -3.3 14.7 4 3 A Y E -A 19 0A 9 15,-3.0 15,-2.1 -2,-0.5 2,-0.3 -0.892 8.2-147.8-111.1 140.9 2.1 -6.9 14.7 5 4 A K E -Ab 18 52A 64 46,-2.4 48,-3.2 -2,-0.4 2,-0.5 -0.859 3.0-155.6-108.4 148.0 3.5 -9.5 12.3 6 5 A L E -Ab 17 53A 0 11,-3.0 11,-2.1 -2,-0.3 2,-0.6 -0.990 4.2-165.0-122.0 121.3 1.7 -12.5 10.8 7 6 A I E -Ab 16 54A 36 46,-2.8 48,-2.8 -2,-0.5 2,-0.7 -0.937 7.6-158.4-104.4 120.8 3.7 -15.5 9.6 8 7 A L E -Ab 15 55A 12 7,-3.1 7,-1.8 -2,-0.6 2,-1.0 -0.894 9.6-174.6-104.1 107.5 1.6 -17.8 7.3 9 8 A N E +Ab 14 56A 69 46,-2.9 48,-2.0 -2,-0.7 5,-0.2 -0.704 21.4 172.3 -98.5 76.4 3.1 -21.3 7.2 10 9 A G - 0 0 7 3,-1.1 30,-0.1 -2,-1.0 32,-0.0 -0.402 46.0-114.2 -81.0 164.7 0.7 -22.8 4.6 11 10 A K S S- 0 0 153 -2,-0.1 -1,-0.1 1,-0.1 3,-0.1 0.916 111.4 -4.6 -63.7 -42.0 1.1 -26.2 3.0 12 11 A T S S+ 0 0 122 1,-0.2 2,-0.5 -3,-0.0 -1,-0.1 0.684 129.5 65.3-113.7 -46.5 1.8 -24.6 -0.4 13 12 A L + 0 0 116 -4,-0.1 -3,-1.1 2,-0.0 2,-0.4 -0.743 61.2 172.1 -93.3 123.6 1.3 -20.8 0.2 14 13 A K E +A 9 0A 140 -2,-0.5 2,-0.3 -5,-0.2 -5,-0.2 -0.953 12.6 117.8-130.4 146.7 3.7 -19.1 2.6 15 14 A G E -A 8 0A 33 -7,-1.8 -7,-3.1 -2,-0.4 2,-0.3 -0.988 42.0-114.3 177.6-173.9 4.2 -15.5 3.4 16 15 A E E +A 7 0A 130 -2,-0.3 2,-0.3 -9,-0.2 -9,-0.2 -0.992 24.5 170.2-146.3 143.5 4.3 -12.7 6.0 17 16 A T E -A 6 0A 54 -11,-2.1 -11,-3.0 -2,-0.3 2,-0.3 -0.892 14.5-146.5-145.6 175.4 2.3 -9.5 6.5 18 17 A T E -A 5 0A 81 -2,-0.3 2,-0.3 -13,-0.2 -13,-0.2 -0.929 8.3-171.4-141.7 162.3 1.9 -6.8 9.1 19 18 A T E -A 4 0A 32 -15,-2.1 -15,-3.0 -2,-0.3 2,-0.4 -0.974 20.7-130.9-151.0 152.8 -0.7 -4.5 10.6 20 19 A E E +A 3 0A 129 -2,-0.3 2,-0.3 -17,-0.2 -17,-0.2 -0.894 40.5 150.0-104.1 135.3 -0.6 -1.6 13.1 21 20 A A E -A 2 0A 7 -19,-2.2 -19,-0.7 -2,-0.4 3,-0.1 -0.976 58.9-102.3-157.6 167.1 -3.0 -1.7 16.0 22 21 A V S S- 0 0 94 -2,-0.3 2,-0.3 -21,-0.2 -20,-0.1 0.826 101.0 -12.8 -64.9 -31.9 -3.6 -0.6 19.6 23 22 A D S > S- 0 0 69 -21,-0.1 4,-2.3 1,-0.1 3,-0.3 -0.961 74.8 -91.4-161.4 171.7 -2.9 -4.2 20.8 24 23 A A H > S+ 0 0 17 -2,-0.3 4,-2.6 1,-0.2 5,-0.1 0.860 119.5 58.5 -61.8 -38.1 -2.5 -7.8 19.7 25 24 A A H > S+ 0 0 61 2,-0.2 4,-0.8 1,-0.2 -1,-0.2 0.888 109.6 44.0 -57.7 -40.4 -6.2 -8.6 20.1 26 25 A T H >> S+ 0 0 59 -3,-0.3 4,-0.8 1,-0.2 3,-0.8 0.930 114.0 49.4 -73.6 -43.2 -7.2 -5.8 17.6 27 26 A A H >X S+ 0 0 0 -4,-2.3 4,-1.9 1,-0.2 3,-0.7 0.869 101.6 64.8 -60.1 -36.7 -4.4 -6.8 15.2 28 27 A E H 3X S+ 0 0 60 -4,-2.6 4,-3.0 1,-0.3 5,-0.3 0.823 92.5 61.9 -62.4 -29.4 -5.6 -10.5 15.4 29 28 A K H S+ 0 0 0 -4,-2.8 5,-2.1 1,-0.2 6,-0.5 0.921 116.1 49.0 -62.5 -43.8 -5.9 -16.3 6.9 36 35 A N H ><5S+ 0 0 112 -4,-2.7 3,-1.4 1,-0.2 -1,-0.2 0.935 111.9 47.0 -63.0 -46.7 -9.6 -17.3 6.7 37 36 A E H 3<5S+ 0 0 111 -4,-2.3 -1,-0.2 -5,-0.3 -2,-0.2 0.747 113.8 49.0 -70.4 -23.4 -10.3 -15.6 3.4 38 37 A H T 3<5S- 0 0 89 -4,-1.5 -1,-0.3 -5,-0.2 -2,-0.2 0.275 109.1-121.4 -98.1 8.6 -7.1 -17.1 1.8 39 38 A G T < 5S+ 0 0 53 -3,-1.4 -3,-0.2 -4,-0.2 -2,-0.1 0.779 84.1 110.0 57.5 33.3 -7.8 -20.6 2.9 40 39 A V < + 0 0 10 -5,-2.1 -4,-0.2 -6,-0.2 -31,-0.1 -0.013 39.9 134.4-123.4 26.9 -4.6 -20.9 4.9 41 40 A D + 0 0 58 -6,-0.5 2,-0.3 -5,-0.2 14,-0.0 -0.285 20.0 119.8 -73.3 164.3 -6.0 -20.9 8.4 42 41 A G - 0 0 33 -32,-0.0 2,-0.4 -2,-0.0 15,-0.2 -0.895 60.7 -0.7 171.2-148.0 -4.8 -23.4 11.0 43 42 A E E -C 56 0A 161 13,-2.2 13,-2.2 -2,-0.3 2,-0.4 -0.582 63.4-148.0 -80.2 131.6 -3.1 -23.4 14.4 44 43 A W E +C 55 0A 50 -2,-0.4 2,-0.3 11,-0.2 11,-0.2 -0.752 17.7 177.8-102.4 139.7 -2.3 -20.0 15.9 45 44 A T E -C 54 0A 84 9,-2.1 9,-2.5 -2,-0.4 2,-0.4 -0.987 11.7-157.1-131.8 143.7 0.6 -19.0 18.2 46 45 A Y E -C 53 0A 81 -2,-0.3 7,-0.2 7,-0.2 -2,-0.0 -0.990 1.1-162.9-120.8 134.5 1.3 -15.5 19.5 47 46 A D E >>> -C 52 0A 65 5,-2.4 5,-1.5 -2,-0.4 3,-1.1 -0.927 2.8-165.9-114.6 102.1 4.7 -14.4 20.7 48 47 A P T 345S+ 0 0 83 0, 0.0 3,-0.2 0, 0.0 -1,-0.1 0.802 84.4 64.9 -56.3 -29.6 4.5 -11.2 22.8 49 48 A E T 345S+ 0 0 170 1,-0.2 -2,-0.0 3,-0.1 0, 0.0 0.795 119.4 21.1 -65.1 -31.8 8.3 -10.7 22.5 50 49 A T T <45S- 0 0 75 -3,-1.1 -1,-0.2 2,-0.2 -45,-0.2 0.300 100.6-124.4-115.5 3.3 8.2 -10.1 18.7 51 50 A K T <5 + 0 0 70 -4,-1.0 -46,-2.4 1,-0.2 2,-0.5 0.884 64.0 148.1 48.6 42.8 4.5 -9.2 18.5 52 51 A T E < -bC 5 47A 9 -5,-1.5 -5,-2.4 -48,-0.2 2,-0.4 -0.933 38.9-161.5-115.8 126.8 4.2 -12.0 16.0 53 52 A F E -bC 6 46A 5 -48,-3.2 -46,-2.8 -2,-0.5 2,-0.4 -0.848 10.3-162.3 -93.0 139.8 1.3 -14.3 15.2 54 53 A T E -bC 7 45A 28 -9,-2.5 -9,-2.1 -2,-0.4 2,-0.5 -0.985 4.2-167.9-121.0 134.7 2.1 -17.5 13.4 55 54 A V E -bC 8 44A 1 -48,-2.8 -46,-2.9 -2,-0.4 2,-0.6 -0.988 3.9-166.6-123.1 123.0 -0.6 -19.6 11.7 56 55 A T E bC 9 43A 65 -13,-2.2 -13,-2.2 -2,-0.5 -46,-0.2 -0.944 360.0 360.0-117.4 116.2 0.3 -23.1 10.5 57 56 A E 0 0 94 -48,-2.0 -47,-0.2 -2,-0.6 -1,-0.1 0.873 360.0 360.0 -69.0 360.0 -2.0 -24.8 8.1