==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=21-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER IMMUNE SYSTEM/PROTEIN BINDING 08-JUN-05 1ZXG . COMPND 2 MOLECULE: IMMUNOGLOBULIN G BINDING PROTEIN A; . SOURCE 2 ORGANISM_SCIENTIFIC: STAPHYLOCOCCUS AUREUS; . AUTHOR Y.HE,D.C.YEH,P.ALEXANDER,P.N.BRYAN,J.ORBAN . 59 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4585.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 40 67.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 13.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 29 49.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 156 0, 0.0 35,-0.1 0, 0.0 34,-0.0 0.000 360.0 360.0 360.0 -33.5 -5.8 9.2 -10.6 2 2 A Y + 0 0 212 4,-0.0 3,-0.1 0, 0.0 0, 0.0 0.591 360.0 8.6-128.7 -59.0 -5.0 12.9 -11.0 3 3 A Y S S+ 0 0 218 1,-0.1 3,-0.1 34,-0.0 0, 0.0 0.082 117.6 72.7-116.2 20.4 -5.4 14.9 -7.8 4 4 A L S S+ 0 0 82 1,-0.2 2,-0.3 33,-0.1 -1,-0.1 0.420 103.2 27.0-111.5 -4.2 -5.9 11.8 -5.5 5 5 A V + 0 0 19 32,-0.2 -1,-0.2 -3,-0.1 2,-0.2 -0.989 52.9 152.3-158.8 150.1 -2.3 10.6 -5.5 6 6 A V - 0 0 109 1,-0.7 3,-0.1 -2,-0.3 -4,-0.0 -0.582 61.7 -14.9 178.4 112.1 1.3 11.8 -6.0 7 7 A N S S+ 0 0 137 1,-0.2 2,-3.5 -2,-0.2 -1,-0.7 0.305 117.8 38.4 67.6 156.1 4.5 10.4 -4.6 8 8 A K S > S+ 0 0 96 1,-0.2 4,-2.8 -3,-0.1 5,-0.3 -0.285 99.3 79.7 69.0 -61.0 4.7 7.8 -1.8 9 9 A Q H > S+ 0 0 26 -2,-3.5 4,-1.3 1,-0.2 -1,-0.2 0.864 95.2 46.4 -41.9 -47.3 1.7 6.0 -3.1 10 10 A Q H >> S+ 0 0 155 1,-0.2 4,-1.1 2,-0.2 3,-0.6 0.944 112.6 48.1 -63.8 -49.2 3.9 4.3 -5.8 11 11 A N H 3> S+ 0 0 123 1,-0.2 4,-0.9 2,-0.2 -1,-0.2 0.800 109.8 55.0 -61.7 -29.0 6.6 3.4 -3.2 12 12 A A H 3X S+ 0 0 0 -4,-2.8 4,-4.3 2,-0.2 -1,-0.2 0.792 95.9 66.8 -75.4 -28.1 3.8 2.1 -1.0 13 13 A F H S- 0 0 100 -2,-0.4 3,-1.0 29,-0.3 34,-0.0 -0.646 74.3-102.0-118.6 176.6 6.8 -10.1 0.1 20 20 A P T 3 S+ 0 0 111 0, 0.0 -2,-0.1 0, 0.0 -1,-0.0 0.769 104.7 85.1 -69.2 -27.0 5.2 -13.3 -1.2 21 21 A N T 3 S+ 0 0 50 35,-0.0 2,-0.1 2,-0.0 -3,-0.1 0.814 108.3 16.0 -44.3 -32.6 3.8 -14.1 2.3 22 22 A L < + 0 0 11 -3,-1.0 -5,-0.1 -5,-0.4 30,-0.0 -0.174 63.8 127.0-117.5-149.2 1.0 -11.9 1.2 23 23 A N + 0 0 86 -7,-0.3 -6,-0.1 -2,-0.1 -1,-0.1 0.846 64.3 80.5 93.2 46.0 -0.2 -10.5 -2.1 24 24 A E S S- 0 0 146 -7,-0.0 4,-0.2 0, 0.0 -2,-0.1 0.338 103.4 -11.7-136.4 -88.2 -3.9 -11.5 -2.0 25 25 A D S >> S+ 0 0 115 2,-0.1 3,-1.5 1,-0.1 4,-1.2 0.884 118.9 68.0 -90.7 -51.5 -6.6 -9.6 -0.1 26 26 A Q H 3> S+ 0 0 53 1,-0.3 4,-1.6 2,-0.2 3,-0.2 0.790 105.9 44.2 -39.9 -41.4 -4.7 -7.2 2.0 27 27 A R H 3>>S+ 0 0 23 2,-0.2 4,-4.1 3,-0.2 5,-0.6 0.749 95.9 75.4 -81.3 -23.9 -3.5 -5.3 -1.0 28 28 A N H <>5S+ 0 0 117 -3,-1.5 4,-0.6 1,-0.2 -1,-0.2 0.923 113.9 25.6 -52.3 -42.6 -7.0 -5.3 -2.6 29 29 A A H X5S+ 0 0 61 -4,-1.2 4,-1.8 -3,-0.2 -1,-0.2 0.787 126.3 50.7 -89.3 -32.1 -7.9 -2.6 -0.1 30 30 A F H X5S+ 0 0 25 -4,-1.6 4,-2.1 -5,-0.3 -3,-0.2 0.953 107.1 51.6 -71.5 -49.6 -4.3 -1.4 0.4 31 31 A I H X5S+ 0 0 48 -4,-4.1 4,-1.6 1,-0.3 -1,-0.2 0.904 115.4 44.6 -52.6 -40.8 -3.6 -1.0 -3.3 32 32 A Q H X< S+ 0 0 0 -4,-2.1 3,-1.6 1,-0.2 -2,-0.2 0.976 106.0 50.6 -65.5 -58.5 -2.8 4.2 -2.2 35 35 A K H 3< S+ 0 0 98 -4,-1.6 -1,-0.2 1,-0.3 -2,-0.2 0.715 106.0 59.5 -53.5 -24.7 -4.8 5.5 -5.2 36 36 A D H 3< S- 0 0 84 -4,-1.3 -1,-0.3 1,-0.3 -2,-0.2 0.807 127.3 -21.4 -76.8 -30.3 -7.0 7.3 -2.7 37 37 A D << - 0 0 59 -3,-1.6 -1,-0.3 -4,-0.9 -32,-0.2 -0.853 40.7-146.6-178.1 141.9 -4.1 9.3 -1.2 38 38 A P S > S+ 0 0 17 0, 0.0 4,-0.6 0, 0.0 -33,-0.1 0.715 98.8 67.4 -86.8 -22.8 -0.3 9.2 -0.9 39 39 A S T 4 S+ 0 0 93 1,-0.2 3,-0.4 2,-0.2 -5,-0.1 0.876 111.9 34.6 -63.6 -35.3 -0.3 10.9 2.5 40 40 A Q T >> S+ 0 0 121 1,-0.2 3,-2.5 -7,-0.2 4,-1.4 0.526 94.9 91.0 -93.3 -10.0 -1.9 7.7 3.8 41 41 A S H 3> S+ 0 0 0 1,-0.3 4,-1.9 2,-0.2 5,-0.2 0.766 79.4 62.8 -57.8 -22.3 0.1 5.6 1.3 42 42 A A H 3X S+ 0 0 27 -4,-0.6 4,-2.2 -3,-0.4 -1,-0.3 0.754 99.9 54.4 -72.7 -22.8 2.6 5.4 4.1 43 43 A N H <> S+ 0 0 103 -3,-2.5 4,-3.1 2,-0.2 5,-0.4 0.927 106.1 49.6 -74.0 -47.5 -0.1 3.6 6.1 44 44 A V H X S+ 0 0 4 -4,-1.4 4,-2.5 1,-0.2 -2,-0.2 0.926 118.9 38.4 -56.8 -48.2 -0.7 1.0 3.5 45 45 A L H X S+ 0 0 27 -4,-1.9 4,-1.4 2,-0.2 -1,-0.2 0.904 112.5 57.8 -70.8 -41.9 3.0 0.2 3.2 46 46 A A H >X S+ 0 0 55 -4,-2.2 4,-0.7 1,-0.2 3,-0.6 0.948 118.2 32.5 -52.9 -50.5 3.5 0.6 7.0 47 47 A E H >X S+ 0 0 80 -4,-3.1 4,-4.1 1,-0.2 3,-1.0 0.857 104.2 76.2 -75.0 -33.5 1.0 -2.1 7.5 48 48 A A H 3X S+ 0 0 0 -4,-2.5 4,-1.4 -5,-0.4 -29,-0.3 0.808 98.6 48.4 -45.1 -30.5 2.1 -3.8 4.3 49 49 A Q H < S+ 0 0 86 -4,-0.8 3,-2.2 1,-0.2 -1,-0.3 0.727 99.5 78.9 -87.2 -25.5 4.0 -10.9 8.3 54 54 A V H 3< S+ 0 0 93 -4,-2.6 -2,-0.2 1,-0.3 -1,-0.2 0.761 112.2 25.7 -53.7 -24.9 0.6 -11.1 9.9 55 55 A Q T 3< S+ 0 0 91 -4,-1.0 -1,-0.3 -3,-0.3 -2,-0.2 0.030 95.4 110.7-127.2 24.1 0.2 -14.3 8.0 56 56 A A < + 0 0 27 -3,-2.2 -34,-0.1 1,-0.2 -35,-0.0 -0.773 30.0 164.4-105.0 89.0 3.9 -15.3 7.6 57 57 A P + 0 0 121 0, 0.0 -1,-0.2 0, 0.0 -4,-0.0 0.910 56.9 76.9 -68.8 -44.0 4.4 -18.4 9.8 58 58 A K 0 0 164 1,-0.1 -37,-0.0 -37,-0.0 -2,-0.0 -0.145 360.0 360.0 -63.9 163.3 7.7 -19.3 8.1 59 59 A A 0 0 165 0, 0.0 -1,-0.1 0, 0.0 -3,-0.1 0.885 360.0 360.0 -60.2 360.0 10.9 -17.5 9.0