==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=21-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER IMMUNE SYSTEM/PROTEIN BINDING 08-JUN-05 1ZXH . COMPND 2 MOLECULE: IMMUNOGLOBULIN G BINDING PROTEIN G; . SOURCE 2 ORGANISM_SCIENTIFIC: STREPTOCOCCUS SP.; . AUTHOR Y.HE,D.C.YEH,P.ALEXANDER,P.N.BRYAN,J.ORBAN . 56 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3991.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 38 67.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 3 5.4 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 11 19.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 7.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 5.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 13 23.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 92 0, 0.0 19,-2.8 0, 0.0 2,-1.1 0.000 360.0 360.0 360.0-149.3 12.6 3.5 3.8 2 2 A Y E +A 19 0A 139 17,-0.2 2,-0.3 19,-0.2 17,-0.2 -0.718 360.0 156.4 -87.5 98.0 11.0 5.5 1.1 3 3 A Y E -A 18 0A 35 15,-1.2 15,-1.3 -2,-1.1 2,-0.4 -0.900 30.7-142.0-123.9 151.9 8.6 3.0 -0.6 4 4 A L E -Ab 17 51A 59 46,-1.1 48,-1.6 -2,-0.3 2,-0.4 -0.883 11.4-157.3-115.3 146.5 5.4 3.5 -2.7 5 5 A V E -Ab 16 52A 0 11,-3.1 11,-1.2 -2,-0.4 2,-0.4 -0.951 6.5-168.5-126.2 145.8 2.3 1.5 -2.7 6 6 A V E -A 15 0A 42 46,-2.9 2,-0.4 -2,-0.4 9,-0.3 -0.954 12.7-149.0-134.8 114.6 -0.5 1.0 -5.2 7 7 A N E +A 14 0A 8 7,-4.4 7,-0.7 -2,-0.4 2,-0.4 -0.665 17.7 179.5 -84.0 131.5 -3.8 -0.8 -4.4 8 8 A K E +A 13 0A 108 46,-0.6 5,-0.2 -2,-0.4 34,-0.1 -0.935 19.0 131.8-137.6 114.5 -5.5 -2.7 -7.2 9 9 A G - 0 0 20 3,-1.1 4,-0.1 -2,-0.4 46,-0.1 0.151 69.5 -70.0-123.8-120.0 -8.7 -4.6 -6.8 10 10 A Q S S+ 0 0 165 -2,-0.0 3,-0.1 2,-0.0 45,-0.0 0.635 120.9 5.4-118.3 -30.4 -11.9 -4.6 -8.9 11 11 A N S S+ 0 0 160 1,-0.2 2,-0.2 0, 0.0 -3,-0.0 -0.114 117.3 67.1-149.9 42.2 -13.4 -1.2 -8.2 12 12 A A - 0 0 60 44,-0.1 -3,-1.1 -5,-0.0 2,-0.5 -0.793 47.1-175.3-168.6 121.5 -10.9 0.7 -6.2 13 13 A F E +A 8 0A 172 -2,-0.2 2,-0.4 -5,-0.2 -5,-0.2 -0.965 15.8 160.2-125.2 115.6 -7.4 2.1 -6.9 14 14 A Y E +A 7 0A 46 -7,-0.7 -7,-4.4 -2,-0.5 2,-0.4 -0.992 9.4 179.0-137.8 129.0 -5.4 3.7 -4.1 15 15 A E E +A 6 0A 121 -2,-0.4 2,-0.3 -9,-0.3 -9,-0.3 -0.994 2.5 176.3-134.3 135.0 -1.6 4.3 -4.0 16 16 A T E -A 5 0A 42 -11,-1.2 -11,-3.1 -2,-0.4 2,-0.5 -0.989 16.6-155.1-138.7 147.0 0.5 6.0 -1.3 17 17 A L E +A 4 0A 101 -2,-0.3 2,-0.3 -13,-0.3 -13,-0.2 -0.979 25.8 162.2-123.2 117.3 4.2 6.6 -0.7 18 18 A T E -A 3 0A 65 -15,-1.3 -15,-1.2 -2,-0.5 2,-0.3 -0.975 43.9 -98.6-138.4 152.8 5.4 7.1 2.9 19 19 A K E +A 2 0A 126 -2,-0.3 -17,-0.2 -17,-0.2 3,-0.1 -0.510 37.9 170.5 -69.2 125.4 8.7 7.0 4.8 20 20 A A - 0 0 4 -19,-2.8 2,-3.3 -2,-0.3 9,-0.1 0.276 34.3-138.0-120.4 7.9 9.1 3.6 6.5 21 21 A V S S+ 0 0 119 4,-0.1 -19,-0.2 5,-0.1 2,-0.2 -0.291 78.5 15.6 68.2 -63.2 12.7 3.8 7.7 22 22 A D S > S- 0 0 89 -2,-3.3 4,-0.6 -21,-0.2 -2,-0.1 -0.485 85.9 -96.6-124.8-164.9 13.4 0.2 6.7 23 23 A A H >> S+ 0 0 37 2,-0.2 4,-2.1 -2,-0.2 3,-1.0 0.966 118.0 34.9 -82.1 -72.5 11.9 -2.6 4.7 24 24 A E H 3> S+ 0 0 133 1,-0.3 4,-3.4 2,-0.3 5,-0.3 0.762 117.4 59.4 -56.3 -21.6 9.9 -4.9 7.0 25 25 A T H 3>>S+ 0 0 55 2,-0.2 4,-2.7 1,-0.2 5,-0.9 0.886 108.6 41.6 -72.8 -37.2 9.1 -1.6 8.7 26 26 A A H <<>S+ 0 0 1 -3,-1.0 5,-0.8 -4,-0.6 -2,-0.3 0.728 115.8 53.1 -78.1 -22.0 7.6 -0.5 5.5 27 27 A R H <5S+ 0 0 104 -4,-2.1 -2,-0.2 3,-0.2 4,-0.2 0.897 126.0 20.9 -77.7 -43.0 6.2 -3.9 5.3 28 28 A N H X5S+ 0 0 109 -4,-3.4 4,-0.9 -5,-0.2 -3,-0.2 0.878 132.3 39.7 -92.1 -48.5 4.6 -3.8 8.7 29 29 A A H X5S+ 0 0 50 -4,-2.7 4,-1.3 -5,-0.3 -3,-0.2 0.942 122.4 40.0 -68.4 -50.0 4.3 -0.0 9.4 30 30 A F H >X S+ 0 0 0 -4,-4.2 4,-2.0 1,-0.2 3,-0.5 0.903 117.3 40.6 -61.3 -37.9 -1.6 1.8 3.3 35 35 A K H 3X S+ 0 0 45 -4,-1.9 4,-2.6 -5,-0.5 -1,-0.2 0.813 100.1 73.3 -78.0 -29.6 -4.3 -0.6 4.3 36 36 A D H 3< S+ 0 0 131 -4,-1.8 -1,-0.2 2,-0.2 -2,-0.2 0.809 109.7 34.0 -52.4 -27.2 -5.8 2.0 6.6 37 37 A D H << S+ 0 0 109 -4,-1.0 -2,-0.2 -3,-0.5 -1,-0.2 0.873 145.1 5.9 -93.3 -49.5 -6.8 3.6 3.3 38 38 A G H >< S+ 0 0 10 -4,-2.0 3,-1.8 -5,-0.2 -2,-0.2 -0.336 72.0 150.5-133.9 53.6 -7.5 0.5 1.2 39 39 A V T 3< + 0 0 72 -4,-2.6 -3,-0.1 1,-0.3 -1,-0.1 0.859 57.8 86.1 -50.6 -42.9 -7.2 -2.5 3.6 40 40 A Q T 3 S+ 0 0 157 -5,-0.2 -1,-0.3 -3,-0.1 2,-0.2 0.710 90.8 57.7 -32.0 -30.6 -9.7 -4.5 1.6 41 41 A G S < S- 0 0 2 -3,-1.8 2,-0.4 15,-0.2 15,-0.4 -0.700 77.5-136.7-107.9 161.9 -6.8 -5.5 -0.5 42 42 A V E -C 55 0B 95 13,-3.2 13,-3.1 -2,-0.2 2,-0.2 -0.933 23.0-133.4-116.5 136.1 -3.5 -7.2 0.2 43 43 A W E -C 54 0B 9 -2,-0.4 2,-0.4 11,-0.4 11,-0.3 -0.593 11.7-160.0 -95.6 158.2 -0.2 -6.0 -1.3 44 44 A T - 0 0 107 9,-0.6 2,-0.3 -2,-0.2 7,-0.1 -0.908 20.6-164.3-130.9 96.0 2.7 -7.8 -3.0 45 45 A Y - 0 0 37 -2,-0.4 7,-0.3 7,-0.2 2,-0.2 -0.659 3.8-149.6 -90.0 143.5 5.8 -5.6 -2.9 46 46 A D > - 0 0 90 5,-1.9 4,-1.0 -2,-0.3 5,-0.5 -0.688 13.1-149.0-105.0 160.3 8.9 -6.2 -5.0 47 47 A D T 4 S+ 0 0 119 -2,-0.2 -1,-0.1 2,-0.2 -2,-0.0 0.786 98.9 59.4 -94.4 -35.5 12.5 -5.4 -4.2 48 48 A A T 4 S+ 0 0 91 1,-0.2 -1,-0.1 3,-0.1 -2,-0.0 0.844 125.0 21.4 -59.4 -37.5 13.5 -4.7 -7.8 49 49 A T T 4 S- 0 0 70 2,-0.2 -2,-0.2 0, 0.0 -1,-0.2 0.769 94.5-139.5-100.1 -38.3 10.9 -2.0 -7.8 50 50 A K < + 0 0 117 -4,-1.0 -46,-1.1 1,-0.3 2,-0.4 0.853 62.6 116.8 77.5 36.3 10.6 -1.3 -4.1 51 51 A T E -b 4 0A 36 -5,-0.5 -5,-1.9 -48,-0.2 2,-0.3 -0.999 52.6-147.6-138.2 141.6 6.8 -0.9 -4.3 52 52 A F E -b 5 0A 2 -48,-1.6 -46,-2.9 -2,-0.4 2,-0.5 -0.790 6.0-151.3-107.8 150.1 3.9 -2.8 -2.9 53 53 A T - 0 0 41 -2,-0.3 2,-1.4 -48,-0.2 -9,-0.6 -0.879 5.2-153.6-124.6 100.5 0.5 -3.3 -4.5 54 54 A V E +C 43 0B 0 -2,-0.5 -46,-0.6 -11,-0.3 2,-0.5 -0.562 26.4 176.7 -75.5 93.8 -2.5 -3.7 -2.1 55 55 A Q E C 42 0B 94 -13,-3.1 -13,-3.2 -2,-1.4 -46,-0.3 -0.870 360.0 360.0-105.2 131.2 -4.8 -5.7 -4.3 56 56 A A 0 0 70 -2,-0.5 -15,-0.2 -15,-0.4 -44,-0.1 -0.530 360.0 360.0-103.1 360.0 -8.2 -7.0 -3.1