==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=21-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 09-JUN-05 1ZY6 . COMPND 2 MOLECULE: PROTEGRIN 1; . SOURCE 2 SYNTHETIC: YES; . AUTHOR X.WU,R.MANI,M.TANG,J.J.BUFFY,A.J.WARING,M.A.SHERMAN,M.HONG . 36 2 4 4 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4503.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 22 61.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 5 13.9 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 11 30.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 2 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 16.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A R 0 0 278 0, 0.0 2,-0.3 0, 0.0 35,-0.2 0.000 360.0 360.0 360.0-144.6 -13.8 -11.5 1.8 2 2 A G + 0 0 59 2,-0.0 2,-0.1 0, 0.0 0, 0.0 -0.725 360.0 48.1 -99.7 147.5 -16.3 -12.1 -1.2 3 3 A G - 0 0 57 -2,-0.3 2,-0.3 15,-0.2 0, 0.0 -0.318 61.7-136.1 108.6 164.5 -18.4 -9.3 -2.7 4 4 A R + 0 0 233 13,-0.2 2,-0.3 -2,-0.1 13,-0.2 -0.909 26.3 151.8-158.6 137.0 -17.6 -5.8 -3.9 5 5 A L E -A 16 0A 100 11,-1.5 11,-1.6 -2,-0.3 2,-0.4 -0.948 26.3-142.1-162.7 146.0 -19.2 -2.3 -3.7 6 6 A a E -A 15 0A 66 -2,-0.3 2,-0.4 9,-0.2 9,-0.2 -0.957 15.6-170.5-111.3 135.5 -18.0 1.4 -3.7 7 7 A Y E -A 14 0A 163 7,-2.3 7,-2.4 -2,-0.4 2,-0.6 -0.978 16.8-135.2-124.6 140.5 -19.4 4.2 -1.6 8 8 A b E -A 13 0A 81 -2,-0.4 2,-0.8 5,-0.3 5,-0.3 -0.856 11.0-169.0-100.2 112.0 -18.8 8.0 -1.7 9 9 A R E > S-A 12 0A 201 3,-2.6 3,-0.8 -2,-0.6 2,-0.4 -0.905 73.5 -52.6 -95.4 99.7 -18.2 9.8 1.6 10 10 A R T 3 S- 0 0 240 -2,-0.8 -2,-0.0 1,-0.2 0, 0.0 -0.497 125.8 -13.9 64.7-111.6 -18.4 13.4 0.3 11 11 A R T 3 S+ 0 0 233 -2,-0.4 2,-0.4 -3,-0.0 -1,-0.2 -0.157 123.2 81.0-112.3 31.1 -15.9 13.7 -2.7 12 12 A F E < -A 9 0A 67 -3,-0.8 -3,-2.6 2,-0.0 2,-0.3 -0.961 61.4-157.6-137.2 116.1 -14.0 10.4 -2.0 13 13 A b E -Ab 8 31A 45 17,-0.6 19,-0.7 -2,-0.4 2,-0.4 -0.735 9.3-160.2 -87.5 143.4 -15.3 7.0 -3.1 14 14 A V E -Ab 7 32A 54 -7,-2.4 -7,-2.3 -2,-0.3 2,-0.4 -0.999 1.8-156.8-129.3 131.5 -14.1 3.8 -1.4 15 15 A a E +Ab 6 33A 21 17,-2.0 19,-2.2 -2,-0.4 2,-0.3 -0.884 18.1 167.6-119.9 130.6 -14.2 0.2 -2.6 16 16 A V E -Ab 5 34A 68 -11,-1.6 -11,-1.5 -2,-0.4 2,-0.8 -0.990 38.7-126.8-132.0 156.4 -14.1 -2.9 -0.5 17 17 A G 0 0 19 17,-0.9 -13,-0.2 -2,-0.3 -14,-0.1 -0.756 360.0 360.0-102.5 87.8 -14.6 -6.6 -0.6 18 18 A R 0 0 245 -2,-0.8 -15,-0.2 -17,-0.1 -14,-0.1 -0.594 360.0 360.0-148.7 360.0 -17.1 -7.2 2.3 19 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 20 1 B R 0 0 276 0, 0.0 2,-0.1 0, 0.0 16,-0.0 0.000 360.0 360.0 360.0-164.8 -8.2 -15.0 -2.5 21 2 B G + 0 0 56 2,-0.0 2,-0.1 16,-0.0 0, 0.0 -0.393 360.0 44.1 -74.9 160.5 -6.3 -14.9 1.0 22 3 B G - 0 0 63 15,-0.2 2,-0.3 14,-0.1 0, 0.0 -0.288 65.1-130.8 89.6 169.5 -4.6 -11.8 2.5 23 4 B R + 0 0 236 13,-0.2 2,-0.3 -2,-0.1 13,-0.2 -0.881 28.0 154.6-157.9 136.7 -5.8 -8.2 2.7 24 5 B L E -C 35 0A 103 11,-1.8 11,-1.9 -2,-0.3 2,-0.4 -0.953 23.8-145.0-158.8 148.0 -4.4 -4.7 1.9 25 6 B c E -C 34 0A 77 -2,-0.3 2,-0.3 9,-0.2 9,-0.2 -0.955 16.0-175.6-115.0 140.3 -5.8 -1.3 1.1 26 7 B Y E -C 33 0A 165 7,-2.0 7,-3.0 -2,-0.4 2,-0.5 -0.963 17.4-134.5-132.3 150.7 -4.3 1.4 -1.3 27 8 B d E -C 32 0A 81 -2,-0.3 2,-0.6 5,-0.3 5,-0.3 -0.930 10.1-170.6-110.8 129.8 -5.2 4.9 -2.3 28 9 B R S S- 0 0 204 3,-3.2 2,-0.1 -2,-0.5 -2,-0.0 -0.949 72.6 -51.6-115.7 99.6 -5.3 6.3 -5.9 29 10 B R S S- 0 0 250 -2,-0.6 2,-1.2 1,-0.2 -17,-0.0 -0.429 124.6 -16.1 61.6-133.7 -5.8 10.1 -5.5 30 11 B R S S+ 0 0 209 -2,-0.1 -17,-0.6 -19,-0.1 2,-0.2 -0.600 123.5 87.5 -96.8 62.8 -8.8 10.7 -3.2 31 12 B F E -b 13 0A 69 -2,-1.2 -3,-3.2 -19,-0.2 2,-0.4 -0.741 57.6-164.6-160.6 110.6 -10.1 7.1 -3.6 32 13 B d E -bC 14 27A 35 -19,-0.7 -17,-2.0 -5,-0.3 2,-0.3 -0.830 6.8-166.4 -98.7 142.9 -9.0 4.1 -1.4 33 14 B V E -bC 15 26A 54 -7,-3.0 -7,-2.0 -2,-0.4 2,-0.4 -0.944 4.8-155.2-124.8 145.3 -9.7 0.5 -2.4 34 15 B c E +bC 16 25A 26 -19,-2.2 -17,-0.9 -2,-0.3 2,-0.3 -0.966 20.7 158.2-130.4 136.7 -9.4 -2.8 -0.4 35 16 B V E - C 0 24A 92 -11,-1.9 -11,-1.8 -2,-0.4 2,-0.7 -0.894 40.7-124.2-148.0 158.4 -8.8 -6.4 -1.6 36 17 B G 0 0 19 -2,-0.3 -13,-0.2 -35,-0.2 -14,-0.1 -0.862 360.0 360.0-108.3 92.0 -7.7 -10.0 -0.8 37 18 B R 0 0 258 -2,-0.7 -15,-0.2 -13,-0.0 -14,-0.1 -0.722 360.0 360.0-147.5 360.0 -4.9 -10.8 -3.3