data_4422 ####################### # Entry information # ####################### save_entry_information _Saveframe_category entry_information _Entry_title ; NMR Solution Structure of Apis mellifera Chymotrypsin Inhibitor (AMCI). ; _BMRB_accession_number 4422 _BMRB_flat_file_name bmr4422.str _Entry_type original _Submission_date 1999-09-27 _Accession_date 1999-09-30 _Entry_origination author _NMR_STAR_version 2.1.1 _Experimental_method NMR _Details . loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Cierpicki T. . . 2 Otlewski J. . . stop_ loop_ _Saveframe_category_type _Saveframe_category_type_count assigned_chemical_shifts 1 stop_ loop_ _Data_type _Data_type_count "1H chemical shifts" 308 stop_ loop_ _Revision_date _Revision_keyword _Revision_author _Revision_detail 2000-12-19 original author . stop_ _Original_release_date 2000-12-19 save_ ############################# # Citation for this entry # ############################# save_entry_citation _Saveframe_category entry_citation _Citation_full ; Cierpicki, T., Bania, J., and Otlewski, J., "NMR Solution Structure of Apis mellifera Chymotrypsin/Cathepsin G Inhibitor-1 (AMCI-1): Structural Similarity with Ascaris Protease Inhibitors," Protein Sci. 9, 976-984 (2000). ; _Citation_title ; NMR Solution Structure of Apis mellifera Chymotrypsin/Cathepsin G Inhibitor-1 (AMCI-1): Structural Similarity with Ascaris Protease Inhibitors. ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code 20306980 _PubMed_ID ? loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Cierpicki Tomasz . . 2 Bania Jacek . . 3 Otlewski Jacek . . stop_ _Journal_abbreviation 'Protein Sci.' _Journal_name_full 'Protein Science' _Journal_volume 9 _Journal_issue . _Journal_CSD . _Book_chapter_title . _Book_volume . _Book_series . _Book_ISBN . _Conference_state_province . _Conference_abstract_number . _Page_first 976 _Page_last 984 _Year 2000 _Details . loop_ _Keyword 'Apis mellifera' 'canonical inhibitor' hemolymph 'protein inhibitor' stop_ save_ ####################################### # Cited references within the entry # ####################################### save_ref_1 _Saveframe_category citation _Citation_full ; Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A, "NMRPipe: a multidimensional spectral processing system based on UNIX pipes," J Biomol NMR 1995 Nov;6(3):277-93 ; _Citation_title 'NMRPipe: a multidimensional spectral processing system based on UNIX pipes.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 8520220 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Delaglio F. . . 2 Grzesiek S. . . 3 Vuister 'G. W.' W. . 4 Zhu G. . . 5 Pfeifer J. . . 6 Bax A. . . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of biomolecular NMR' _Journal_volume 6 _Journal_issue 3 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 277 _Page_last 293 _Year 1995 _Details ; The NMRPipe system is a UNIX software environment of processing, graphics, and analysis tools designed to meet current routine and research-oriented multidimensional processing requirements, and to anticipate and accommodate future demands and developments. The system is based on UNIX pipes, which allow programs running simultaneously to exchange streams of data under user control. In an NMRPipe processing scheme, a stream of spectral data flows through a pipeline of processing programs, each of which performs one component of the overall scheme, such as Fourier transformation or linear prediction. Complete multidimensional processing schemes are constructed as simple UNIX shell scripts. The processing modules themselves maintain and exploit accurate records of data sizes, detection modes, and calibration information in all dimensions, so that schemes can be constructed without the need to explicitly define or anticipate data sizes or storage details of real and imaginary channels during processing. The asynchronous pipeline scheme provides other substantial advantages, including high flexibility, favorable processing speeds, choice of both all-in-memory and disk-bound processing, easy adaptation to different data formats, simpler software development and maintenance, and the ability to distribute processing tasks on multi-CPU computers and computer networks. ; save_ save_ref_2 _Saveframe_category citation _Citation_full ; Guntert P, Mumenthaler C, Wuthrich K, "Torsion angle dynamics for NMR structure calculation with the new program DYANA," J Mol Biol 1997 Oct 17;273(1):283-98 ; _Citation_title 'Torsion angle dynamics for NMR structure calculation with the new program DYANA.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 9367762 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Guntert P. . . 2 Mumenthaler C. . . 3 Wuthrich K. . . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_name_full 'Journal of molecular biology' _Journal_volume 273 _Journal_issue 1 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 283 _Page_last 298 _Year 1997 _Details ; The new program DYANA (DYnamics Algorithm for Nmr Applications) for efficient calculation of three-dimensional protein and nucleic acid structures from distance constraints and torsion angle constraints collected by nuclear magnetic resonance (NMR) experiments performs simulated annealing by molecular dynamics in torsion angle space and uses a fast recursive algorithm to integrate the equations of motions. Torsion angle dynamics can be more efficient than molecular dynamics in Cartesian coordinate space because of the reduced number of degrees of freedom and the concomitant absence of high-frequency bond and angle vibrations, which allows for the use of longer time-steps and/or higher temperatures in the structure calculation. It also represents a significant advance over the variable target function method in torsion angle space with the REDAC strategy used by the predecessor program DIANA. DYANA computation times per accepted conformer in the "bundle" used to represent the NMR structure compare favorably with those of other presently available structure calculation algorithms, and are of the order of 160 seconds for a protein of 165 amino acid residues when using a DEC Alpha 8400 5/300 computer. Test calculations starting from conformers with random torsion angle values further showed that DYANA is capable of efficient calculation of high-quality protein structures with up to 400 amino acid residues, and of nucleic acid structures. ; save_ ################################## # Molecular system description # ################################## save_system_AMCI _Saveframe_category molecular_system _Mol_system_name 'Apis mellifera chymotrypsin inhibitor' _Abbreviation_common AMCI _Enzyme_commission_number . loop_ _Mol_system_component_name _Mol_label AMCI $AMCI stop_ _System_molecular_weight . _System_physical_state native _System_oligomer_state monomer _System_paramagnetic no _System_thiol_state 'all disulfide bound' loop_ _Biological_function 'Protease inhibitor' stop_ _Database_query_date . _Details . save_ ######################## # Monomeric polymers # ######################## save_AMCI _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class protein _Name_common 'Apis mellifera chymotrypsin inhibitor' _Abbreviation_common AMCI _Molecular_mass . _Mol_thiol_state 'all disulfide bound' _Details . ############################## # Polymer residue sequence # ############################## _Residue_count 56 _Mol_residue_sequence ; EECGPNEVFNTCGSACAPTC AQPKTRICTMQCRIGCQCQE GFLRNGEGACVLPENC ; loop_ _Residue_seq_code _Residue_label 1 GLU 2 GLU 3 CYS 4 GLY 5 PRO 6 ASN 7 GLU 8 VAL 9 PHE 10 ASN 11 THR 12 CYS 13 GLY 14 SER 15 ALA 16 CYS 17 ALA 18 PRO 19 THR 20 CYS 21 ALA 22 GLN 23 PRO 24 LYS 25 THR 26 ARG 27 ILE 28 CYS 29 THR 30 MET 31 GLN 32 CYS 33 ARG 34 ILE 35 GLY 36 CYS 37 GLN 38 CYS 39 GLN 40 GLU 41 GLY 42 PHE 43 LEU 44 ARG 45 ASN 46 GLY 47 GLU 48 GLY 49 ALA 50 CYS 51 VAL 52 LEU 53 PRO 54 GLU 55 ASN 56 CYS stop_ _Sequence_homology_query_date . _Sequence_homology_query_revised_last_date 2015-07-14 loop_ _Database_name _Database_accession_code _Database_entry_mol_name _Sequence_query_to_submitted_percentage _Sequence_subject_length _Sequence_identity _Sequence_positive _Sequence_homology_expectation_value PDB 1CCV "Nmr Solution Structure Of Apis Mellifera Chymotrypsin Inhibitor (Amci)" 100.00 56 100.00 100.00 3.77e-30 REF XP_006563422 "PREDICTED: chymotrypsin inhibitor [Apis mellifera]" 100.00 76 100.00 100.00 4.42e-31 SP P56682 "RecName: Full=Chymotrypsin inhibitor; AltName: Full=AMCI" 100.00 56 100.00 100.00 3.77e-30 stop_ save_ #################### # Natural source # #################### save_natural_source _Saveframe_category natural_source loop_ _Mol_label _Organism_name_common _NCBI_taxonomy_ID _Superkingdom _Kingdom _Genus _Species _Tissue $AMCI Honeybee 7460 Eukaryota Metazoa Apis mellifera hemolymph stop_ save_ ######################### # Experimental source # ######################### save_experimental_source _Saveframe_category experimental_source loop_ _Mol_label _Production_method _Host_organism_name_common _Genus _Species _Strain _Vector_name $AMCI 'purified from natural source' . . . . . stop_ save_ ##################################### # Sample contents and methodology # ##################################### ######################## # Sample description # ######################## save_sample_one _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $AMCI 6.6 mM . stop_ save_ ############################ # Computer software used # ############################ save_NMRPipe _Saveframe_category software _Name NMRPipe _Version . loop_ _Task 'spectra processing' stop_ _Details . _Citation_label $ref_1 save_ save_SPARKY _Saveframe_category software _Name SPARKY _Version . loop_ _Task 'analysis and intergation of NMR spectra' stop_ _Details . save_ save_DYANA _Saveframe_category software _Name DYANA _Version . loop_ _Task 'structure calculation' stop_ _Details . _Citation_label $ref_2 save_ ######################### # Experimental detail # ######################### ################################## # NMR Spectrometer definitions # ################################## save_NMR_spectrometer _Saveframe_category NMR_spectrometer _Manufacturer Varian _Model UnityPlus _Field_strength 500 _Details . save_ ############################# # NMR applied experiments # ############################# save_NOESY_1 _Saveframe_category NMR_applied_experiment _Experiment_name NOESY _Sample_label $sample_one save_ save_TOCSY_2 _Saveframe_category NMR_applied_experiment _Experiment_name TOCSY _Sample_label $sample_one save_ save_DQFCOSY_3 _Saveframe_category NMR_applied_experiment _Experiment_name DQFCOSY _Sample_label $sample_one save_ save_NMR_spec_expt__0_1 _Saveframe_category NMR_applied_experiment _Experiment_name NOESY _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_2 _Saveframe_category NMR_applied_experiment _Experiment_name TOCSY _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_3 _Saveframe_category NMR_applied_experiment _Experiment_name DQFCOSY _BMRB_pulse_sequence_accession_number . _Details . save_ ####################### # Sample conditions # ####################### save_sample_conditions _Saveframe_category sample_conditions _Details . loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units pH* 2.5 0.1 na temperature 288 1 K stop_ save_ #################### # NMR parameters # #################### ############################## # Assigned chemical shifts # ############################## ################################ # Chemical shift referencing # ################################ save_chemical_shift_reference _Saveframe_category chemical_shift_reference _Details . loop_ _Mol_common_name _Atom_type _Atom_isotope_number _Atom_group _Chem_shift_units _Chem_shift_value _Reference_method _Reference_type _External_reference_sample_geometry _External_reference_location _External_reference_axis DSS H 1 'methyl protons' ppm 0.00 external direct cylindrical External_in_the_sample parallel_to_Bo stop_ save_ ################################### # Assigned chemical shift lists # ################################### ################################################################### # Chemical Shift Ambiguity Index Value Definitions # # # # The values other than 1 are used for those atoms with different # # chemical shifts that cannot be assigned to stereospecific atoms # # or to specific residues or chains. # # # # Index Value Definition # # # # 1 Unique (including isolated methyl protons, # # geminal atoms, and geminal methyl # # groups with identical chemical shifts) # # (e.g. ILE HD11, HD12, HD13 protons) # # 2 Ambiguity of geminal atoms or geminal methyl # # proton groups (e.g. ASP HB2 and HB3 # # protons, LEU CD1 and CD2 carbons, or # # LEU HD11, HD12, HD13 and HD21, HD22, # # HD23 methyl protons) # # 3 Aromatic atoms on opposite sides of # # symmetrical rings (e.g. TYR HE1 and HE2 # # protons) # # 4 Intraresidue ambiguities (e.g. LYS HG and # # HD protons or TRP HZ2 and HZ3 protons) # # 5 Interresidue ambiguities (LYS 12 vs. LYS 27) # # 6 Intermolecular ambiguities (e.g. ASP 31 CA # # in monomer 1 and ASP 31 CA in monomer 2 # # of an asymmetrical homodimer, duplex # # DNA assignments, or other assignments # # that may apply to atoms in one or more # # molecule in the molecular assembly) # # 9 Ambiguous, specific ambiguity not defined # # # ################################################################### save_assigned_chemical_shifts _Saveframe_category assigned_chemical_shifts _Details . loop_ _Sample_label $sample_one stop_ _Sample_conditions_label $sample_conditions _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name AMCI _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 1 GLU HA H 3.79 0.01 1 2 . 1 GLU HB2 H 1.69 0.01 2 3 . 1 GLU HB3 H 1.72 0.01 2 4 . 1 GLU HG2 H 2.13 0.01 1 5 . 1 GLU HG3 H 2.13 0.01 1 6 . 2 GLU H H 8.69 0.01 1 7 . 2 GLU HA H 4.28 0.01 1 8 . 2 GLU HB2 H 1.84 0.01 2 9 . 2 GLU HB3 H 1.94 0.01 2 10 . 2 GLU HG2 H 2.30 0.01 1 11 . 2 GLU HG3 H 2.30 0.01 1 12 . 3 CYS H H 8.53 0.01 1 13 . 3 CYS HA H 4.89 0.01 1 14 . 3 CYS HB2 H 2.53 0.01 2 15 . 3 CYS HB3 H 3.18 0.01 2 16 . 4 GLY H H 7.51 0.01 1 17 . 4 GLY HA2 H 3.66 0.01 2 18 . 4 GLY HA3 H 4.12 0.01 2 19 . 5 PRO HA H 4.05 0.01 1 20 . 5 PRO HB2 H 2.10 0.01 2 21 . 5 PRO HB3 H 1.65 0.01 2 22 . 5 PRO HG2 H 1.82 0.01 2 23 . 5 PRO HG3 H 1.95 0.01 2 24 . 5 PRO HD2 H 3.49 0.01 2 25 . 5 PRO HD3 H 3.35 0.01 2 26 . 6 ASN H H 8.91 0.01 1 27 . 6 ASN HA H 3.61 0.01 1 28 . 6 ASN HB2 H 2.39 0.01 2 29 . 6 ASN HB3 H 0.98 0.01 2 30 . 6 ASN HD21 H 6.80 0.01 2 31 . 6 ASN HD22 H 6.92 0.01 2 32 . 7 GLU H H 7.14 0.01 1 33 . 7 GLU HA H 5.14 0.01 1 34 . 7 GLU HB2 H 1.97 0.01 2 35 . 7 GLU HB3 H 1.61 0.01 2 36 . 7 GLU HG2 H 2.16 0.01 2 37 . 7 GLU HG3 H 2.22 0.01 2 38 . 8 VAL H H 9.09 0.01 1 39 . 8 VAL HA H 4.38 0.01 1 40 . 8 VAL HB H 1.90 0.01 1 41 . 8 VAL HG1 H 0.80 0.01 2 42 . 8 VAL HG2 H 0.72 0.01 2 43 . 9 PHE H H 8.88 0.01 1 44 . 9 PHE HA H 4.20 0.01 1 45 . 9 PHE HB2 H 2.94 0.01 2 46 . 9 PHE HB3 H 2.82 0.01 2 47 . 9 PHE HD1 H 6.89 0.01 1 48 . 9 PHE HD2 H 6.89 0.01 1 49 . 9 PHE HE1 H 7.11 0.01 1 50 . 9 PHE HE2 H 7.11 0.01 1 51 . 9 PHE HZ H 7.05 0.01 1 52 . 10 ASN H H 7.56 0.01 1 53 . 10 ASN HA H 4.76 0.01 1 54 . 10 ASN HB2 H 2.61 0.01 2 55 . 10 ASN HB3 H 2.21 0.01 2 56 . 10 ASN HD21 H 6.70 0.01 2 57 . 10 ASN HD22 H 7.54 0.01 2 58 . 11 THR H H 8.28 0.01 1 59 . 11 THR HA H 3.86 0.01 1 60 . 11 THR HB H 4.20 0.01 1 61 . 11 THR HG2 H 1.22 0.01 1 62 . 12 CYS H H 8.58 0.01 1 63 . 12 CYS HA H 4.23 0.01 1 64 . 12 CYS HB2 H 2.59 0.01 2 65 . 12 CYS HB3 H 3.13 0.01 2 66 . 13 GLY H H 8.44 0.01 1 67 . 13 GLY HA2 H 3.62 0.01 2 68 . 13 GLY HA3 H 4.12 0.01 2 69 . 14 SER H H 8.29 0.01 1 70 . 14 SER HA H 4.33 0.01 1 71 . 14 SER HB2 H 3.88 0.01 2 72 . 14 SER HB3 H 3.45 0.01 2 73 . 15 ALA H H 9.23 0.01 1 74 . 15 ALA HA H 4.12 0.01 1 75 . 15 ALA HB H 1.35 0.01 1 76 . 16 CYS H H 8.55 0.01 1 77 . 16 CYS HA H 4.74 0.01 1 78 . 16 CYS HB2 H 2.91 0.01 1 79 . 16 CYS HB3 H 2.91 0.01 1 80 . 17 ALA H H 7.43 0.01 1 81 . 17 ALA HA H 4.32 0.01 1 82 . 17 ALA HB H 1.31 0.01 1 83 . 18 PRO HA H 4.51 0.01 1 84 . 18 PRO HB2 H 1.75 0.01 2 85 . 18 PRO HB3 H 2.16 0.01 2 86 . 18 PRO HG2 H 1.85 0.01 2 87 . 18 PRO HG3 H 1.93 0.01 2 88 . 18 PRO HD2 H 3.58 0.01 2 89 . 18 PRO HD3 H 3.79 0.01 2 90 . 19 THR H H 7.87 0.01 1 91 . 19 THR HA H 4.76 0.01 1 92 . 19 THR HB H 4.57 0.01 1 93 . 19 THR HG2 H 1.14 0.01 1 94 . 20 CYS H H 8.52 0.01 1 95 . 20 CYS HA H 4.08 0.01 1 96 . 20 CYS HB2 H 2.91 0.01 2 97 . 20 CYS HB3 H 2.82 0.01 2 98 . 21 ALA H H 7.93 0.01 1 99 . 21 ALA HA H 4.05 0.01 1 100 . 21 ALA HB H 1.25 0.01 1 101 . 22 GLN H H 7.58 0.01 1 102 . 22 GLN HA H 4.60 0.01 1 103 . 22 GLN HB2 H 1.78 0.01 2 104 . 22 GLN HB3 H 1.92 0.01 2 105 . 22 GLN HG2 H 2.04 0.01 2 106 . 22 GLN HG3 H 2.08 0.01 2 107 . 22 GLN HE21 H 6.73 0.01 2 108 . 22 GLN HE22 H 7.42 0.01 2 109 . 23 PRO HA H 4.56 0.01 1 110 . 23 PRO HB2 H 2.10 0.01 2 111 . 23 PRO HB3 H 1.84 0.01 2 112 . 23 PRO HG2 H 1.73 0.01 2 113 . 23 PRO HG3 H 1.92 0.01 2 114 . 23 PRO HD2 H 3.52 0.01 2 115 . 23 PRO HD3 H 3.25 0.01 2 116 . 24 LYS H H 7.82 0.01 1 117 . 24 LYS HA H 4.31 0.01 1 118 . 24 LYS HB2 H 1.62 0.01 2 119 . 24 LYS HB3 H 1.65 0.01 2 120 . 24 LYS HG2 H 1.26 0.01 2 121 . 24 LYS HG3 H 1.30 0.01 2 122 . 24 LYS HD2 H 1.54 0.01 1 123 . 24 LYS HD3 H 1.54 0.01 1 124 . 24 LYS HE2 H 2.86 0.01 1 125 . 24 LYS HE3 H 2.86 0.01 1 126 . 24 LYS HZ H 7.43 0.01 3 127 . 25 THR H H 8.26 0.01 1 128 . 25 THR HA H 4.03 0.01 1 129 . 25 THR HB H 3.91 0.01 1 130 . 25 THR HG2 H 1.06 0.01 1 131 . 26 ARG H H 8.58 0.01 1 132 . 26 ARG HA H 4.42 0.01 1 133 . 26 ARG HB2 H 1.65 0.01 1 134 . 26 ARG HB3 H 1.65 0.01 1 135 . 26 ARG HG2 H 1.48 0.01 1 136 . 26 ARG HG3 H 1.48 0.01 1 137 . 26 ARG HD2 H 3.02 0.01 1 138 . 26 ARG HD3 H 3.02 0.01 1 139 . 26 ARG HE H 7.29 0.01 1 140 . 27 ILE H H 8.16 0.01 1 141 . 27 ILE HA H 4.06 0.01 1 142 . 27 ILE HB H 1.64 0.01 1 143 . 27 ILE HG2 H 0.72 0.01 1 144 . 27 ILE HG12 H 1.05 0.01 2 145 . 27 ILE HG13 H 1.35 0.01 2 146 . 27 ILE HD1 H 0.69 0.01 1 147 . 28 CYS H H 8.52 0.01 1 148 . 28 CYS HA H 4.82 0.01 1 149 . 28 CYS HB2 H 3.11 0.01 2 150 . 28 CYS HB3 H 3.03 0.01 2 151 . 29 THR H H 8.22 0.01 1 152 . 29 THR HA H 4.13 0.01 1 153 . 29 THR HB H 4.12 0.01 1 154 . 29 THR HG2 H 1.06 0.01 1 155 . 30 MET H H 8.08 0.01 1 156 . 30 MET HA H 4.31 0.01 1 157 . 30 MET HB2 H 1.80 0.01 2 158 . 30 MET HB3 H 2.00 0.01 2 159 . 30 MET HG2 H 2.41 0.01 2 160 . 30 MET HG3 H 2.47 0.01 2 161 . 31 GLN H H 7.92 0.01 1 162 . 31 GLN HA H 4.10 0.01 1 163 . 31 GLN HB2 H 1.84 0.01 1 164 . 31 GLN HB3 H 1.84 0.01 1 165 . 31 GLN HG2 H 2.21 0.01 1 166 . 31 GLN HG3 H 2.21 0.01 1 167 . 31 GLN HE21 H 6.79 0.01 2 168 . 31 GLN HE22 H 7.46 0.01 2 169 . 32 CYS H H 8.56 0.01 1 170 . 32 CYS HA H 4.53 0.01 1 171 . 32 CYS HB2 H 2.79 0.01 2 172 . 32 CYS HB3 H 3.11 0.01 2 173 . 33 ARG H H 8.45 0.01 1 174 . 33 ARG HA H 4.52 0.01 1 175 . 33 ARG HB2 H 1.27 0.01 2 176 . 33 ARG HB3 H 1.35 0.01 2 177 . 33 ARG HG2 H 1.27 0.01 2 178 . 33 ARG HG3 H 1.35 0.01 2 179 . 33 ARG HD2 H 2.97 0.01 1 180 . 33 ARG HD3 H 2.97 0.01 1 181 . 33 ARG HE H 7.10 0.01 1 182 . 34 ILE H H 8.71 0.01 1 183 . 34 ILE HA H 4.18 0.01 1 184 . 34 ILE HB H 1.60 0.01 1 185 . 34 ILE HG2 H 0.84 0.01 1 186 . 34 ILE HG12 H 1.03 0.01 2 187 . 34 ILE HG13 H 1.44 0.01 2 188 . 34 ILE HD1 H 0.86 0.01 1 189 . 35 GLY H H 7.75 0.01 1 190 . 35 GLY HA2 H 3.61 0.01 2 191 . 35 GLY HA3 H 4.38 0.01 2 192 . 36 CYS H H 8.90 0.01 1 193 . 36 CYS HA H 4.76 0.01 1 194 . 36 CYS HB2 H 2.81 0.01 2 195 . 36 CYS HB3 H 2.71 0.01 2 196 . 37 GLN H H 9.03 0.01 1 197 . 37 GLN HA H 4.57 0.01 1 198 . 37 GLN HB2 H 2.02 0.01 2 199 . 37 GLN HB3 H 1.80 0.01 2 200 . 37 GLN HG2 H 2.14 0.01 2 201 . 37 GLN HG3 H 2.23 0.01 2 202 . 37 GLN HE21 H 6.90 0.01 2 203 . 37 GLN HE22 H 7.29 0.01 2 204 . 38 CYS H H 8.71 0.01 1 205 . 38 CYS HA H 4.82 0.01 1 206 . 38 CYS HB2 H 2.61 0.01 2 207 . 38 CYS HB3 H 3.04 0.01 2 208 . 39 GLN H H 8.41 0.01 1 209 . 39 GLN HA H 3.99 0.01 1 210 . 39 GLN HB2 H 1.52 0.01 2 211 . 39 GLN HB3 H 1.82 0.01 2 212 . 39 GLN HG2 H 1.90 0.01 2 213 . 39 GLN HG3 H 2.12 0.01 2 214 . 39 GLN HE21 H 6.76 0.01 2 215 . 39 GLN HE22 H 7.05 0.01 2 216 . 40 GLU H H 8.53 0.01 1 217 . 40 GLU HA H 4.01 0.01 1 218 . 40 GLU HB2 H 1.93 0.01 2 219 . 40 GLU HB3 H 1.99 0.01 2 220 . 40 GLU HG2 H 2.41 0.01 1 221 . 40 GLU HG3 H 2.41 0.01 1 222 . 41 GLY H H 8.64 0.01 1 223 . 41 GLY HA2 H 3.31 0.01 2 224 . 41 GLY HA3 H 4.06 0.01 2 225 . 42 PHE H H 8.11 0.01 1 226 . 42 PHE HA H 4.67 0.01 1 227 . 42 PHE HB2 H 3.14 0.01 2 228 . 42 PHE HB3 H 2.44 0.01 2 229 . 42 PHE HD1 H 6.63 0.01 1 230 . 42 PHE HD2 H 6.63 0.01 1 231 . 42 PHE HE1 H 7.05 0.01 1 232 . 42 PHE HE2 H 7.05 0.01 1 233 . 43 LEU H H 9.59 0.01 1 234 . 43 LEU HA H 4.47 0.01 1 235 . 43 LEU HB2 H 1.33 0.01 2 236 . 43 LEU HB3 H 0.95 0.01 2 237 . 43 LEU HG H 1.23 0.01 1 238 . 43 LEU HD1 H 0.68 0.01 2 239 . 43 LEU HD2 H 0.57 0.01 2 240 . 44 ARG H H 7.52 0.01 1 241 . 44 ARG HA H 4.75 0.01 1 242 . 44 ARG HB2 H 1.63 0.01 2 243 . 44 ARG HB3 H 1.78 0.01 2 244 . 44 ARG HG2 H 1.52 0.01 2 245 . 44 ARG HG3 H 1.77 0.01 2 246 . 44 ARG HD2 H 2.92 0.01 1 247 . 44 ARG HD3 H 2.92 0.01 1 248 . 44 ARG HE H 7.06 0.01 1 249 . 45 ASN H H 9.41 0.01 1 250 . 45 ASN HA H 4.60 0.01 1 251 . 45 ASN HB2 H 3.59 0.01 2 252 . 45 ASN HB3 H 2.83 0.01 2 253 . 45 ASN HD21 H 7.30 0.01 2 254 . 45 ASN HD22 H 7.75 0.01 2 255 . 46 GLY H H 8.66 0.01 1 256 . 46 GLY HA2 H 3.78 0.01 1 257 . 46 GLY HA3 H 3.78 0.01 1 258 . 47 GLU H H 7.46 0.01 1 259 . 47 GLU HA H 4.41 0.01 1 260 . 47 GLU HB2 H 1.91 0.01 2 261 . 47 GLU HB3 H 2.22 0.01 2 262 . 47 GLU HG2 H 2.30 0.01 2 263 . 47 GLU HG3 H 2.42 0.01 2 264 . 48 GLY H H 7.86 0.01 1 265 . 48 GLY HA2 H 3.44 0.01 2 266 . 48 GLY HA3 H 4.19 0.01 2 267 . 49 ALA H H 7.96 0.01 1 268 . 49 ALA HA H 4.35 0.01 1 269 . 49 ALA HB H 1.20 0.01 1 270 . 50 CYS H H 8.68 0.01 1 271 . 50 CYS HA H 4.93 0.01 1 272 . 50 CYS HB2 H 2.66 0.01 2 273 . 50 CYS HB3 H 2.35 0.01 2 274 . 51 VAL H H 9.47 0.01 1 275 . 51 VAL HA H 4.90 0.01 1 276 . 51 VAL HB H 2.17 0.01 1 277 . 51 VAL HG1 H 0.74 0.01 2 278 . 51 VAL HG2 H 0.66 0.01 2 279 . 52 LEU H H 8.75 0.01 1 280 . 52 LEU HA H 4.15 0.01 1 281 . 52 LEU HB2 H 1.31 0.01 2 282 . 52 LEU HB3 H 1.39 0.01 2 283 . 52 LEU HG H 1.41 0.01 1 284 . 52 LEU HD1 H 0.71 0.01 2 285 . 52 LEU HD2 H 0.13 0.01 2 286 . 53 PRO HA H 4.12 0.01 1 287 . 53 PRO HB2 H 1.75 0.01 2 288 . 53 PRO HB3 H 2.17 0.01 2 289 . 53 PRO HG2 H 1.70 0.01 2 290 . 53 PRO HG3 H 1.99 0.01 2 291 . 53 PRO HD2 H 3.42 0.01 2 292 . 53 PRO HD3 H 3.87 0.01 2 293 . 54 GLU H H 8.31 0.01 1 294 . 54 GLU HA H 4.08 0.01 1 295 . 54 GLU HB2 H 1.91 0.01 2 296 . 54 GLU HB3 H 1.94 0.01 2 297 . 54 GLU HG2 H 2.20 0.01 2 298 . 54 GLU HG3 H 2.26 0.01 2 299 . 55 ASN H H 8.38 0.01 1 300 . 55 ASN HA H 4.93 0.01 1 301 . 55 ASN HB2 H 2.55 0.01 2 302 . 55 ASN HB3 H 3.10 0.01 2 303 . 55 ASN HD21 H 6.99 0.01 2 304 . 55 ASN HD22 H 7.74 0.01 2 305 . 56 CYS H H 7.39 0.01 1 306 . 56 CYS HA H 4.23 0.01 1 307 . 56 CYS HB2 H 2.89 0.01 2 308 . 56 CYS HB3 H 3.06 0.01 2 stop_ save_