data_4432 ####################### # Entry information # ####################### save_entry_information _Saveframe_category entry_information _Entry_title ; 1H-NMR Spectral Assignment of Second Transmembrane Segments of Human Glycine Receptor ; _BMRB_accession_number 4432 _BMRB_flat_file_name bmr4432.str _Entry_type original _Submission_date 1999-10-05 _Accession_date 1999-10-05 _Entry_origination author _NMR_STAR_version 2.1.1 _Experimental_method NMR _Details . loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Tang Pei . . 2 Zubrzycki Igor Z. . 3 Hu Jian . . 4 Xu Yan . . stop_ loop_ _Saveframe_category_type _Saveframe_category_type_count assigned_chemical_shifts 2 stop_ loop_ _Data_type _Data_type_count "1H chemical shifts" 198 stop_ loop_ _Revision_date _Revision_keyword _Revision_author _Revision_detail 2003-04-23 update BMRB 'update of relationship loop' 2000-05-05 original author 'original release' stop_ loop_ _Related_BMRB_accession_number _Relationship 4433 'glycine receptor alpha 1 subunit TM2 segment S267Y mutant' 5607 'Human Neuronal Glycine Receptor alpha-1 Chain TM2' stop_ save_ ####################################### # Cited references within the entry # ####################################### save_entry_citation _Saveframe_category citation _Citation_full . _Citation_title 'NMRPipe: a multidimensional spectral processing system based on UNIX pipes.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 8520220 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Delaglio F . . 2 Grzesiek S . . 3 Vuister 'G W' W. . 4 Zhu G . . 5 Pfeifer J . . 6 Bax A . . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of biomolecular NMR' _Journal_volume 6 _Journal_issue 3 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 277 _Page_last 293 _Year 1995 _Details ; The NMRPipe system is a UNIX software environment of processing, graphics, and analysis tools designed to meet current routine and research-oriented multidimensional processing requirements, and to anticipate and accommodate future demands and developments. The system is based on UNIX pipes, which allow programs running simultaneously to exchange streams of data under user control. In an NMRPipe processing scheme, a stream of spectral data flows through a pipeline of processing programs, each of which performs one component of the overall scheme, such as Fourier transformation or linear prediction. Complete multidimensional processing schemes are constructed as simple UNIX shell scripts. The processing modules themselves maintain and exploit accurate records of data sizes, detection modes, and calibration information in all dimensions, so that schemes can be constructed without the need to explicitly define or anticipate data sizes or storage details of real and imaginary channels during processing. The asynchronous pipeline scheme provides other substantial advantages, including high flexibility, favorable processing speeds, choice of both all-in-memory and disk-bound processing, easy adaptation to different data formats, simpler software development and maintenance, and the ability to distribute processing tasks on multi-CPU computers and computer networks. ; save_ save_Ref_1 _Saveframe_category citation _Citation_full ; Grenningloh, G., V. Schmieden, P. R. Schofield, P. H. Seeburg, T. Siddique, T. K. Mohandas, C. M. Becker, and H. Betz. 1990. "Alpha subunit variants of the human glycine receptor: primary structures, functional expression and chromosomal localization of the corresponding genes." Embo J. 9:771-776." ; _Citation_title 'NMRPipe: a multidimensional spectral processing system based on UNIX pipes.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 8520220 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Delaglio F . . 2 Grzesiek S . . 3 Vuister 'G W' W. . 4 Zhu G . . 5 Pfeifer J . . 6 Bax A . . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of biomolecular NMR' _Journal_volume 6 _Journal_issue 3 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 277 _Page_last 293 _Year 1995 _Details ; The NMRPipe system is a UNIX software environment of processing, graphics, and analysis tools designed to meet current routine and research-oriented multidimensional processing requirements, and to anticipate and accommodate future demands and developments. The system is based on UNIX pipes, which allow programs running simultaneously to exchange streams of data under user control. In an NMRPipe processing scheme, a stream of spectral data flows through a pipeline of processing programs, each of which performs one component of the overall scheme, such as Fourier transformation or linear prediction. Complete multidimensional processing schemes are constructed as simple UNIX shell scripts. The processing modules themselves maintain and exploit accurate records of data sizes, detection modes, and calibration information in all dimensions, so that schemes can be constructed without the need to explicitly define or anticipate data sizes or storage details of real and imaginary channels during processing. The asynchronous pipeline scheme provides other substantial advantages, including high flexibility, favorable processing speeds, choice of both all-in-memory and disk-bound processing, easy adaptation to different data formats, simpler software development and maintenance, and the ability to distribute processing tasks on multi-CPU computers and computer networks. ; save_ save_Ref_2 _Saveframe_category citation _Citation_full ; Delaglio, F., S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, and A. Bax. 1995. "NMRPipe: a multidimensional spectral processing system based on UNIX pipes." J. Biomol. NMR. 6:277-293. ; _Citation_title 'NMRPipe: a multidimensional spectral processing system based on UNIX pipes.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 8520220 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Delaglio F . . 2 Grzesiek S . . 3 Vuister 'G W' W. . 4 Zhu G . . 5 Pfeifer J . . 6 Bax A . . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of biomolecular NMR' _Journal_volume 6 _Journal_issue 3 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 277 _Page_last 293 _Year 1995 _Details ; The NMRPipe system is a UNIX software environment of processing, graphics, and analysis tools designed to meet current routine and research-oriented multidimensional processing requirements, and to anticipate and accommodate future demands and developments. The system is based on UNIX pipes, which allow programs running simultaneously to exchange streams of data under user control. In an NMRPipe processing scheme, a stream of spectral data flows through a pipeline of processing programs, each of which performs one component of the overall scheme, such as Fourier transformation or linear prediction. Complete multidimensional processing schemes are constructed as simple UNIX shell scripts. The processing modules themselves maintain and exploit accurate records of data sizes, detection modes, and calibration information in all dimensions, so that schemes can be constructed without the need to explicitly define or anticipate data sizes or storage details of real and imaginary channels during processing. The asynchronous pipeline scheme provides other substantial advantages, including high flexibility, favorable processing speeds, choice of both all-in-memory and disk-bound processing, easy adaptation to different data formats, simpler software development and maintenance, and the ability to distribute processing tasks on multi-CPU computers and computer networks. ; save_ ################################## # Molecular system description # ################################## save_system_GlyR_M2 _Saveframe_category molecular_system _Mol_system_name 'glycine receptor alpha 1 subunit TM2 segment' _Abbreviation_common 'GlyR M2' _Enzyme_commission_number . loop_ _Mol_system_component_name _Mol_label 'GlyR M2' $GlyR_alpha1_M2_wild_type stop_ _System_molecular_weight . _System_physical_state native _System_oligomer_state monomer _System_paramagnetic no _System_thiol_state 'not present' loop_ _Biological_function 'Primary inhibitory receptors in the spinal cord' stop_ _Database_query_date . _Details . save_ ######################## # Monomeric polymers # ######################## save_GlyR_alpha1_M2_wild_type _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class protein _Name_common 'Neurotransmitter-gated receptor' _Abbreviation_common 'GlyR M2' _Molecular_mass . _Mol_thiol_state 'not present' _Details . ############################## # Polymer residue sequence # ############################## _Residue_count 23 _Mol_residue_sequence ; PARVGLGITTVLTMTTQSSG SRA ; loop_ _Residue_seq_code _Residue_author_seq_code _Residue_label 1 -2 PRO 2 -1 ALA 3 0 ARG 4 1 VAL 5 2 GLY 6 3 LEU 7 4 GLY 8 5 ILE 9 6 THR 10 7 THR 11 8 VAL 12 9 LEU 13 10 THR 14 11 MET 15 12 THR 16 13 THR 17 14 GLN 18 15 SER 19 16 SER 20 17 GLY 21 18 SER 22 19 ARG 23 20 ALA stop_ _Sequence_homology_query_date . _Sequence_homology_query_revised_last_date 2015-09-29 loop_ _Database_name _Database_accession_code _Database_entry_mol_name _Sequence_query_to_submitted_percentage _Sequence_subject_length _Sequence_identity _Sequence_positive _Sequence_homology_expectation_value PDB 1MOT "Nmr Structure Of Extended Second Transmembrane Domain Of Glycine Receptor Alpha1 Subunit In Sds Micelles" 100.00 28 100.00 100.00 5.99e-05 PDB 3JAD "Structure Of Alpha-1 Glycine Receptor By Single Particle Electron Cryo-microscopy, Strychnine-bound State" 100.00 342 100.00 100.00 2.22e-05 PDB 3JAE "Structure Of Alpha-1 Glycine Receptor By Single Particle Electron Cryo-microscopy, Glycine-bound State" 100.00 342 100.00 100.00 2.22e-05 PDB 3JAF "Structure Of Alpha-1 Glycine Receptor By Single Particle Electron Cryo-microscopy, Glycine/ivermectin-bound State" 100.00 342 100.00 100.00 2.22e-05 PDB 4X5T "Alpha 1 Glycine Receptor Transmembrane Structure Fused To The Extracellular Domain Of Glic" 100.00 330 100.00 100.00 2.13e-05 DBJ BAA00707 "glycine receptor alpha 1 precursor [Rattus norvegicus]" 100.00 449 100.00 100.00 2.89e-05 DBJ BAC39521 "unnamed protein product [Mus musculus]" 100.00 343 100.00 100.00 7.32e-05 DBJ BAG35580 "unnamed protein product [Homo sapiens]" 100.00 449 100.00 100.00 2.89e-05 EMBL CAA06711 "glycine receptor, alphaZ1 subunit [Danio rerio]" 100.00 444 100.00 100.00 2.86e-05 EMBL CAA36258 "inhibitory glycine receptor [Homo sapiens]" 100.00 449 100.00 100.00 2.89e-05 EMBL CAA38987 "inhibitory glycine receptor alpha-1 subunit [Rattus norvegicus]" 100.00 457 100.00 100.00 2.93e-05 EMBL CAA53468 "glycine receptor subunit alpha 4 [Mus musculus]" 100.00 337 100.00 100.00 2.18e-05 EMBL CAA68378 "glycine receptor strychnine binding subunit [Rattus norvegicus]" 100.00 427 100.00 100.00 2.77e-05 GB AAB32157 "inhibitory glycine receptor alpha 1 subunit short form [Mus sp.]" 100.00 449 100.00 100.00 2.89e-05 GB AAB32158 "inhibitory glycine receptor alpha 1 subunit long form [Mus sp.]" 100.00 457 100.00 100.00 2.93e-05 GB AAG14346 "glycine receptor alpha 1 subunit [Bos taurus]" 100.00 457 100.00 100.00 2.93e-05 GB AAG41140 "glycine receptor alpha 1 subunit isoform b [Bos taurus]" 100.00 449 100.00 100.00 2.89e-05 GB AAG41141 "glycine receptor alpha 1 subunit isoform a [Bos taurus]" 100.00 457 100.00 100.00 2.93e-05 PRF 1309300A "Gly receptor" 100.00 427 100.00 100.00 2.77e-05 REF NP_000162 "glycine receptor subunit alpha-1 isoform 2 precursor [Homo sapiens]" 100.00 449 100.00 100.00 2.89e-05 REF NP_001019623 "glycine receptor subunit alpha-4 isoform 1 precursor [Homo sapiens]" 100.00 417 100.00 100.00 6.92e-05 REF NP_001092519 "glycine receptor subunit alpha-4 precursor [Bos taurus]" 100.00 342 100.00 100.00 4.64e-05 REF NP_001139512 "glycine receptor subunit alpha-1 isoform 1 precursor [Homo sapiens]" 100.00 457 100.00 100.00 2.93e-05 REF NP_001165756 "glycine receptor subunit alpha-4 isoform 2 precursor [Homo sapiens]" 100.00 342 100.00 100.00 4.64e-05 SP O93430 "RecName: Full=Glycine receptor subunit alphaZ1; Flags: Precursor" 100.00 444 100.00 100.00 2.86e-05 SP P07727 "RecName: Full=Glycine receptor subunit alpha-1; AltName: Full=Glycine receptor 48 kDa subunit; AltName: Full=Glycine receptor s" 100.00 457 100.00 100.00 2.93e-05 SP P23415 "RecName: Full=Glycine receptor subunit alpha-1; AltName: Full=Glycine receptor 48 kDa subunit; AltName: Full=Glycine receptor s" 100.00 457 100.00 100.00 2.93e-05 SP P57695 "RecName: Full=Glycine receptor subunit alpha-1; AltName: Full=Glycine receptor 48 kDa subunit; AltName: Full=Glycine receptor s" 100.00 457 100.00 100.00 2.93e-05 SP Q5JXX5 "RecName: Full=Glycine receptor subunit alpha-4; Flags: Precursor" 100.00 417 100.00 100.00 6.92e-05 TPG DAA13089 "TPA: hypothetical protein LOC531678 [Bos taurus]" 100.00 342 100.00 100.00 4.64e-05 TPG DAA27256 "TPA: glycine receptor subunit alpha-1 precursor [Bos taurus]" 100.00 457 100.00 100.00 2.93e-05 stop_ save_ #################### # Natural source # #################### save_natural_source _Saveframe_category natural_source loop_ _Mol_label _Organism_name_common _NCBI_taxonomy_ID _Superkingdom _Kingdom _Genus _Species $GlyR_alpha1_M2_wild_type Human 9606 Eukaryota Metazoa Homo sapiens stop_ save_ ######################### # Experimental source # ######################### save_experimental_source _Saveframe_category experimental_source loop_ _Mol_label _Production_method _Host_organism_name_common _Genus _Species _Strain _Vector_name _Details $GlyR_alpha1_M2_wild_type 'chemical synthesis' . . . . . ; Solid-phase synthesis Reverse-phase HPLC purification. ; stop_ save_ ##################################### # Sample contents and methodology # ##################################### ######################## # Sample description # ######################## save_sample_one _Saveframe_category sample _Sample_type micelles _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $GlyR_alpha1_M2_wild_type 3.1 mM . SDS 677 mM . stop_ save_ save_sample_two _Saveframe_category sample _Sample_type b_micelles _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $GlyR_alpha1_M2_wild_type 3.1 mM . DPC . mM . stop_ save_ ############################ # Computer software used # ############################ save_software_one _Saveframe_category software _Name NMRPipe _Version . loop_ _Task 'Data process' stop_ _Details . _Citation_label $Ref_2 save_ save_software_two _Saveframe_category software _Name Sparky _Version . loop_ _Task 'Data analysis' stop_ _Details . save_ ######################### # Experimental detail # ######################### ################################## # NMR Spectrometer definitions # ################################## save_NMR_spectrometer_one _Saveframe_category NMR_spectrometer _Manufacturer Bruker _Model DMX _Field_strength 750 _Details . save_ save_NMR_spectrometer_two _Saveframe_category NMR_spectrometer _Manufacturer Bruker _Model DMX _Field_strength 600 _Details . save_ ############################# # NMR applied experiments # ############################# save_1H-NOESY_1 _Saveframe_category NMR_applied_experiment _Experiment_name 1H-NOESY _Sample_label . save_ save_1H-TOCSY_2 _Saveframe_category NMR_applied_experiment _Experiment_name 1H-TOCSY _Sample_label . save_ save_NMR_spec_expt__0_1 _Saveframe_category NMR_applied_experiment _Experiment_name 1H-NOESY _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_2 _Saveframe_category NMR_applied_experiment _Experiment_name 1H-TOCSY _BMRB_pulse_sequence_accession_number . _Details . save_ ####################### # Sample conditions # ####################### save_sample_conditions _Saveframe_category sample_conditions _Details ; A special procedure, as described in the associated paper for this submission, was used to incorporate M2 into SDS or DPC. ; loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units pH 4.8 0.2 na temperature 303 0.5 K stop_ save_ #################### # NMR parameters # #################### ############################## # Assigned chemical shifts # ############################## ################################ # Chemical shift referencing # ################################ save_chemical_shift_reference _Saveframe_category chemical_shift_reference _Details . loop_ _Mol_common_name _Atom_type _Atom_isotope_number _Atom_group _Chem_shift_units _Chem_shift_value _Reference_method _Reference_type _External_reference_sample_geometry _External_reference_location _External_reference_axis _Indirect_shift_ratio DSS H 1 'methyl protons' ppm 0.0 internal direct . . . 1.0 stop_ save_ ################################### # Assigned chemical shift lists # ################################### ################################################################### # Chemical Shift Ambiguity Index Value Definitions # # # # The values other than 1 are used for those atoms with different # # chemical shifts that cannot be assigned to stereospecific atoms # # or to specific residues or chains. # # # # Index Value Definition # # # # 1 Unique (including isolated methyl protons, # # geminal atoms, and geminal methyl # # groups with identical chemical shifts) # # (e.g. ILE HD11, HD12, HD13 protons) # # 2 Ambiguity of geminal atoms or geminal methyl # # proton groups (e.g. ASP HB2 and HB3 # # protons, LEU CD1 and CD2 carbons, or # # LEU HD11, HD12, HD13 and HD21, HD22, # # HD23 methyl protons) # # 3 Aromatic atoms on opposite sides of # # symmetrical rings (e.g. TYR HE1 and HE2 # # protons) # # 4 Intraresidue ambiguities (e.g. LYS HG and # # HD protons or TRP HZ2 and HZ3 protons) # # 5 Interresidue ambiguities (LYS 12 vs. LYS 27) # # 6 Intermolecular ambiguities (e.g. ASP 31 CA # # in monomer 1 and ASP 31 CA in monomer 2 # # of an asymmetrical homodimer, duplex # # DNA assignments, or other assignments # # that may apply to atoms in one or more # # molecule in the molecular assembly) # # 9 Ambiguous, specific ambiguity not defined # # # ################################################################### save_assigned_chemical_shifts_one _Saveframe_category assigned_chemical_shifts _Details . loop_ _Sample_label $sample_two stop_ _Sample_conditions_label $sample_conditions _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name 'GlyR M2' _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 1 PRO HA H 4.387 . 1 2 . 1 PRO HB2 H 2.446 . 2 3 . 1 PRO HD2 H 3.387 . 2 4 . 1 PRO HG2 H 2.043 . 2 5 . 2 ALA HA H 4.35 . 1 6 . 2 ALA HB H 1.397 . 1 7 . 2 ALA H H 8.796 . 1 8 . 3 ARG HA H 4.309 . 1 9 . 3 ARG HB2 H 1.817 . 1 10 . 3 ARG HD2 H 3.178 . 2 11 . 3 ARG HG2 H 1.649 . 1 12 . 3 ARG HE H 7.451 . 1 13 . 3 ARG H H 8.569 . 1 14 . 4 VAL HA H 4.037 . 1 15 . 4 VAL HB H 2.081 . 1 16 . 4 VAL HG1 H 0.953 . 2 17 . 4 VAL HG2 H 0.937 . 2 18 . 4 VAL H H 8.152 . 1 19 . 5 GLY HA2 H 3.934 . 2 20 . 5 GLY H H 8.486 . 1 21 . 6 LEU HA H 4.276 . 1 22 . 6 LEU HB2 H 1.668 . 1 23 . 6 LEU HD1 H 0.892 . 2 24 . 6 LEU HD2 H 0.937 . 2 25 . 6 LEU HG H 1.610 . 1 26 . 6 LEU H H 8.228 . 1 27 . 7 GLY HA2 H 3.965 . 1 28 . 7 GLY HA3 H 3.958 . 1 29 . 7 GLY H H 8.426 . 1 30 . 8 ILE HA H 3.909 . 1 31 . 8 ILE HB H 1.953 . 1 32 . 8 ILE HD1 H 0.888 . 1 33 . 8 ILE HG12 H 1.607 . 1 34 . 8 ILE HG13 H 1.607 . 1 35 . 8 ILE HG2 H 1.235 . 1 36 . 8 ILE H H 8.409 . 1 37 . 9 THR HA H 3.998 . 1 38 . 9 THR HB H 4.265 . 1 39 . 9 THR HG2 H 1.244 . 1 40 . 9 THR H H 8.292 . 1 41 . 10 THR HA H 4.066 . 1 42 . 10 THR HB H 4.268 . 1 43 . 10 THR HG2 H 1.231 . 1 44 . 10 THR H H 7.893 . 1 45 . 11 VAL HA H 3.868 . 1 46 . 11 VAL HB H 2.2 . 1 47 . 11 VAL HG1 H 1.025 . 2 48 . 11 VAL HG2 H 0.942 . 2 49 . 11 VAL H H 7.741 . 1 50 . 12 LEU HA H 4.2 . 1 51 . 12 LEU HB2 H 1.803 . 1 52 . 12 LEU HD1 H 0.866 . 2 53 . 12 LEU HG H 1.591 . 1 54 . 12 LEU H H 8.045 . 1 55 . 13 THR HA H 4.202 . 1 56 . 13 THR HB H 4.306 . 1 57 . 13 THR HG2 H 1.221 . 1 58 . 13 THR H H 7.963 . 1 59 . 14 MET HA H 4.401 . 1 60 . 14 MET HB2 H 2.149 . 2 61 . 14 MET HG2 H 2.684 . 1 62 . 14 MET HG3 H 2.597 . 1 63 . 14 MET H H 8.023 . 1 64 . 15 THR HA H 4.261 . 1 65 . 15 THR HB H 4.387 . 1 66 . 15 THR HG2 H 1.219 . 1 67 . 15 THR H H 7.924 . 1 68 . 16 THR HA H 4.268 . 1 69 . 16 THR HB H 4.339 . 1 70 . 16 THR HG2 H 1.220 . 1 71 . 16 THR H H 7.943 . 1 72 . 17 GLN HA H 4.356 . 1 73 . 17 GLN HB2 H 2.016 . 1 74 . 17 GLN HB3 H 2.155 . 1 75 . 17 GLN HG2 H 2.378 . 2 76 . 17 GLN H H 8.251 . 1 77 . 18 SER HA H 4.465 . 1 78 . 18 SER HB2 H 3.895 . 1 79 . 18 SER H H 8.294 . 1 80 . 19 SER HA H 4.437 . 1 81 . 19 SER HB2 H 3.853 . 1 82 . 19 SER HB3 H 3.884 . 1 83 . 19 SER H H 8.350 . 1 84 . 20 GLY HA2 H 3.979 . 2 85 . 20 GLY H H 8.392 . 1 86 . 21 SER HA H 4.433 . 1 87 . 21 SER HB2 H 3.844 . 1 88 . 21 SER HB3 H 3.970 . 1 89 . 21 SER H H 8.135 . 1 90 . 22 ARG HA H 4.350 . 1 91 . 22 ARG HB2 H 1.878 . 1 92 . 22 ARG HD2 H 3.179 . 1 93 . 22 ARG HE H 7.277 . 1 94 . 22 ARG HG2 H 1.649 . 1 95 . 22 ARG HG3 H 1.744 . 1 96 . 22 ARG H H 8.349 . 1 97 . 23 ALA HA H 4.196 . 1 98 . 23 ALA HB H 1.347 . 1 99 . 23 ALA H H 8.098 . 1 stop_ save_ save_assigned_chemical_shifts_two _Saveframe_category assigned_chemical_shifts _Details . loop_ _Sample_label $sample_one stop_ _Sample_conditions_label $sample_conditions _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name 'GlyR M2' _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 1 PRO HA H 4.473 . 1 2 . 1 PRO HB2 H 2.516 . 2 3 . 1 PRO HD2 H 3.426 . 2 4 . 1 PRO HG2 H 2.147 . 2 5 . 2 ALA HA H 4.374 . 1 6 . 2 ALA HB H 1.448 . 1 7 . 2 ALA H H 8.596 . 1 8 . 3 ARG HA H 4.29 . 1 9 . 3 ARG HB2 H 1.894 . 2 10 . 3 ARG HD2 H 3.193 . 2 11 . 3 ARG HE H 7.109 . 1 12 . 3 ARG HG2 H 1.716 . 1 13 . 3 ARG HG3 H 1.663 . 1 14 . 3 ARG H H 8.179 . 1 15 . 4 VAL HA H 4.002 . 1 16 . 4 VAL HB H 2.159 . 1 17 . 4 VAL HG1 H 0.98 . 2 18 . 4 VAL HG2 H 0.949 . 2 19 . 4 VAL H H 7.728 . 1 20 . 5 GLY HA2 H 3.885 . 2 21 . 5 GLY H H 8.159 . 1 22 . 6 LEU HA H 4.259 . 1 23 . 6 LEU HB2 H 1.723 . 1 24 . 6 LEU HD1 H 0.886 . 2 25 . 6 LEU HD2 H 0.918 . 2 26 . 6 LEU HG H 1.641 . 1 27 . 6 LEU H H 7.898 . 1 28 . 7 GLY HA2 H 3.906 . 2 29 . 7 GLY H H 8.383 . 1 30 . 8 ILE HA H 3.818 . 1 31 . 8 ILE HB H 1.961 . 1 32 . 8 ILE HD1 H 0.897 . 1 33 . 8 ILE HG12 H 1.670 . 1 34 . 8 ILE HG13 H 1.670 . 1 35 . 8 ILE HG2 H 0.936 . 1 36 . 8 ILE H H 8.203 . 1 37 . 9 THR HA H 3.96 . 1 38 . 9 THR HB H 4.283 . 1 39 . 9 THR HG2 H 1.279 . 1 40 . 9 THR H H 8.142 . 1 41 . 10 THR HA H 4.021 . 1 42 . 10 THR HB H 4.337 . 1 43 . 10 THR HG2 H 1.247 . 1 44 . 10 THR H H 7.932 . 1 45 . 11 VAL HA H 3.807 . 1 46 . 11 VAL HB H 2.216 . 1 47 . 11 VAL HG1 H 0.954 . 2 48 . 11 VAL HG2 H 1.056 . 2 49 . 11 VAL H H 7.868 . 1 50 . 12 LEU HA H 4.186 . 1 51 . 12 LEU HB2 H 1.822 . 1 52 . 12 LEU HD1 H 0.864 . 2 53 . 12 LEU HG H 1.597 . 1 54 . 12 LEU H H 8.207 . 1 55 . 13 THR HA H 4.033 . 1 56 . 13 THR HB H 4.349 . 1 57 . 13 THR HG2 H 1.26 . 1 58 . 13 THR H H 8.029 . 1 59 . 14 MET HA H 4.35 . 1 60 . 14 MET HB2 H 2.204 . 2 61 . 14 MET HG2 H 2.662 . 1 62 . 14 MET HG3 H 2.662 . 1 63 . 14 MET H H 7.967 . 1 64 . 15 THR HA H 4.018 . 1 65 . 15 THR HB H 4.358 . 1 66 . 15 THR HG2 H 1.265 . 1 67 . 15 THR H H 7.941 . 1 68 . 16 THR HA H 4.012 . 1 69 . 16 THR HB H 4.313 . 1 70 . 16 THR HG2 H 1.268 . 1 71 . 16 THR H H 7.899 . 1 72 . 17 GLN HA H 4.36 . 1 73 . 17 GLN HB2 H 2.06 . 1 74 . 17 GLN HB3 H 2.198 . 1 75 . 17 GLN HG2 H 2.42 . 2 76 . 17 GLN H H 8.039 . 1 77 . 18 SER HA H 4.48 . 1 78 . 18 SER HB2 H 3.944 . 1 79 . 18 SER HB3 H 3.908 . 1 80 . 18 SER H H 8.048 . 1 81 . 19 SER HA H 4.44 . 1 82 . 19 SER HB2 H 3.94 . 1 83 . 19 SER HB3 H 3.905 . 1 84 . 19 SER H H 8.245 . 1 85 . 20 GLY HA2 H 4.018 . 2 86 . 20 GLY H H 8.322 . 1 87 . 21 SER HA H 4.466 . 1 88 . 21 SER HB2 H 3.872 . 2 89 . 21 SER H H 8.075 . 1 90 . 22 ARG HA H 4.337 . 1 91 . 22 ARG HB2 H 1.89 . 2 92 . 22 ARG HD2 H 3.181 . 2 93 . 22 ARG HE H 7.115 . 1 94 . 22 ARG HG2 H 1.67 . 1 95 . 22 ARG HG3 H 1.776 . 1 96 . 22 ARG H H 8.155 . 1 97 . 23 ALA HA H 4.213 . 1 98 . 23 ALA HB H 1.353 . 1 99 . 23 ALA H H 7.925 . 1 stop_ save_