data_4877 ####################### # Entry information # ####################### save_entry_information _Saveframe_category entry_information _Entry_title ; 1H NMR Analysis of the partly-folded non-native two-disulphide intermediates (30-51, 5-14) and (30-51, 5-38) in the folding pathway of bovine pancreatic trypsin inhibitor ; _BMRB_accession_number 4877 _BMRB_flat_file_name bmr4877.str _Entry_type original _Submission_date 2000-10-24 _Accession_date 2000-10-24 _Entry_origination author _NMR_STAR_version 2.1.1 _Experimental_method NMR _Details . loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 'van Mierlo' Carlo P.M. . 2 Kemmink Johan . . 3 Neuhaus David . . 4 Darby Nigel J. . 5 Creighton Thomas E. . stop_ loop_ _Saveframe_category_type _Saveframe_category_type_count assigned_chemical_shifts 1 stop_ loop_ _Data_type _Data_type_count "1H chemical shifts" 337 stop_ loop_ _Revision_date _Revision_keyword _Revision_author _Revision_detail 2000-11-29 original author 'Original release.' 2002-08-12 update BMRB 'Modify the saveframe name.' stop_ loop_ _Related_BMRB_accession_number _Relationship 2169 '(5-55)Ser BPTI folding intermediate' 4855 '(14-38, 30-51)Ser BPTI folding intermediate' 4868 BPTI-R52 4873 '(30-51)Ser BPTI folding intermediate' 4875 '(30-51, 5-14)Ser BPTI folding intermediate' stop_ save_ ############################# # Citation for this entry # ############################# save_entry_citation _Saveframe_category entry_citation _Citation_full . _Citation_title ; 1H NMR Analysis of the partly-folded non-native two-disulphide intermediates (30-51, 5-14) and (30-51, 5-38) in the folding pathway of bovine pancreatic trypsin inhibitor ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code 1960732 _PubMed_ID ? loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 'van Mierlo' Carlo P.M. . 2 Kemmink Johan . . 3 Neuhaus David . . 4 Darby Nigel J. . 5 Creighton Thomas E. . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_volume 235 _Journal_issue . _Journal_CSD . _Book_chapter_title . _Book_volume . _Book_series . _Book_ISBN . _Conference_state_province . _Conference_abstract_number . _Page_first 1044 _Page_last 1061 _Year 1994 _Details . loop_ _Keyword 'bovine pancreatic trypsin inhibitor (BPTI)' 'disulphide bonds' 'folding intermediate' NMR 'protein folding' stop_ save_ ####################################### # Cited references within the entry # ####################################### save_ref_1 _Saveframe_category citation _Citation_full ; Darby NJ, van Mierlo CP, Creighton TE. The 5-55 single-disulphide intermediate in folding of bovine pancreatic trypsin inhibitor. FEBS Lett. 1991 Feb 11;279(1):61-4. ; _Citation_title 'The 5-55 single-disulphide intermediate in folding of bovine pancreatic trypsin inhibitor.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 1704858 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Darby 'N J' J. . 2 'van Mierlo' 'C P' P. . 3 Creighton 'T E' E. . stop_ _Journal_abbreviation 'FEBS Lett.' _Journal_name_full 'FEBS letters' _Journal_volume 279 _Journal_issue 1 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 61 _Page_last 64 _Year 1991 _Details ; An analogue of the BPT1 folding intermediate that contains only the disulphide bond between Cys-5 and Cys-55 has been prepared by mutation of the other four Cys residues to Ser. On the basis of its circular dichroism and 1H-nuclear magnetic resonance spectra and its electrophoretic mobility, this intermediate is shown to be at least partially folded at low temperatures. This probably accounts for several of the unique properties of this intermediate observed during folding. ; save_ save_ref_2 _Saveframe_category citation _Citation_full ; van Mierlo CP, Darby NJ, Neuhaus D, Creighton TE. (14-38, 30-51) double-disulphide intermediate in folding of bovine pancreatic trypsin inhibitor: a two-dimensional 1H nuclear magnetic resonance study. J Mol Biol. 1991 Nov 20;222(2):353-71. ; _Citation_title '(14-38, 30-51) double-disulphide intermediate in folding of bovine pancreatic trypsin inhibitor: a two-dimensional 1H nuclear magnetic resonance study.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 1960731 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 'van Mierlo' 'C. P.' P. . 2 Darby 'N. J.' J. . 3 Neuhaus D. . . 4 Creighton 'T. E.' E. . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_name_full 'Journal of molecular biology' _Journal_volume 222 _Journal_issue 2 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 353 _Page_last 371 _Year 1991 _Details ; An analogue of the BPTI folding intermediate that contains only the disulphide bonds between Cys14 and Cys38 and between Cys30 and Cys51 has been prepared in Escherichia coli by protein engineering methods. The other two Cys residues of native BPTI (at positions 5 and 55) have been replaced by Ser. Essentially complete proton resonance assignments of the analogue were obtained by employing two-dimensional 1H nuclear magnetic resonance techniques. The intermediate has a more extended conformation in the N-terminal (residues 1 to 7) region and there are other differences in the C-terminal (residues 55 to 58) region. The remainder of the protein is substantially identical to native BPTI. The conformational properties of the analogue can explain several aspects of the kinetic role that the normal (14-38, 30-51) intermediate plays in the folding of BPTI. ; save_ save_ref_3 _Saveframe_category citation _Citation_full ; Darby NJ, van Mierlo CP, Scott GH, Neuhaus D, Creighton TE. Kinetic roles and conformational properties of the non-native two-disulphide intermediates in the refolding of bovine pancreatic trypsin inhibitor. J Mol Biol. 1992 Apr 20;224(4):905-11. ; _Citation_title 'Kinetic roles and conformational properties of the non-native two-disulphide intermediates in the refolding of bovine pancreatic trypsin inhibitor.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 1373775 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Darby 'N. J.' J. . 2 'van Mierlo' 'C. P.' P. . 3 Scott 'G. H.' H. . 4 Neuhaus D. . . 5 Creighton 'T. E.' E. . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_name_full 'Journal of molecular biology' _Journal_volume 224 _Journal_issue 4 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 905 _Page_last 911 _Year 1992 _Details ; The most productive folding pathway of reduced bovine pancreatic trypsin inhibitor (BPTI) proceeds through the disulphide intermediates (30-51), (30-51, 5-14), and (30-51, 5-38); these are important kinetic intermediates in folding, even though the latter pair contain non-native disulphide bonds. Analogues of these intermediates have been prepared by protein engineering methods and their conformational properties examined by circular dichroism and 1H-nuclear magnetic resonance. The (30-51), (30-51, 5-14) and (30-51, 5-38) analogues exhibit comparable degrees of stable structure, which cannot include those portions of the polypeptide chain involving Cys5, Cys14 and Cys38. These properties are consistent with the roles of (30-51, 5-14) and (30-51, 5-38) in the folding pathway of BPTI, which demand that they exhibit a considerable degree of conformational flexibility in part of the molecule. ; save_ save_ref_4 _Saveframe_category citation _Citation_full ; van Mierlo CP, Darby NJ, Creighton TE. The partially folded conformation of the Cys-30 Cys-51 intermediate in the disulfide folding pathway of bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6775-9. ; _Citation_title 'The partially folded conformation of the Cys-30 Cys-51 intermediate in the disulfide folding pathway of bovine pancreatic trypsin inhibitor.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 1379719 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 'van Mierlo' 'C. P.' P. . 2 Darby 'N. J.' J. . 3 Creighton 'T. E.' E. . stop_ _Journal_abbreviation 'Proc. Natl. Acad. Sci. U.S.A.' _Journal_name_full 'Proceedings of the National Academy of Sciences of the United States of America' _Journal_volume 89 _Journal_issue 15 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 6775 _Page_last 6779 _Year 1992 _Details ; The best-characterized protein folding pathway is that of bovine pancreatic trypsin inhibitor, which folds from the reduced form through a series of disulfide bond intermediates. The crucial one-disulfide intermediate of bovine pancreatic trypsin inhibitor with the disulfide bond between Cys-30 and Cys-51 is shown here to have a partially folded conformation in which the major elements of secondary structure interact via a core of apolar side chains, which resembles part of the native conformation. The stability of this structure can account for the predominance of this one-disulfide intermediate during folding. Much of the remaining one-third of the polypeptide chain, in particular the N-terminal 14 residues, is largely disordered; this accounts for the ability of this intermediate to form readily any of the three possible second disulfide bonds involving Cys-5, -14, and -38. The partially folded conformation of this intermediate provides direct evidence for the importance of native-like interactions between elements of secondary structure in directing protein folding, which is assumed in many studies. ; save_ save_ref_5 _Saveframe_category citation _Citation_full ; van Mierlo CP, Darby NJ, Keeler J, Neuhaus D, Creighton TE. Partially folded conformation of the (30-51) intermediate in the disulphide folding pathway of bovine pancreatic trypsin inhibitor. 1H and 15N resonance assignments and determination of backbone dynamics from 15N relaxation measurements. J Mol Biol. 1993 Feb 20;229(4):1125-46. ; _Citation_title 'Partially folded conformation of the (30-51) intermediate in the disulphide folding pathway of bovine pancreatic trypsin inhibitor. 1H and 15N resonance assignments and determination of backbone dynamics from 15N relaxation measurements.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 7680380 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 'van Mierlo' 'C. P.' P. . 2 Darby 'N. J.' J. . 3 Keeler J. . . 4 Neuhaus D. . . 5 Creighton 'T. E.' E. . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_name_full 'Journal of molecular biology' _Journal_volume 229 _Journal_issue 4 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 1125 _Page_last 1146 _Year 1993 _Details ; An analogue of the important folding intermediate of BPTI with only the disulphide bond between Cys30 and Cys51 has been characterized by 1H and 15N NMR techniques. In particular, the dynamics of the polypeptide backbone were characterized using (1H)-15N NOE and 15N T1 and T2 relaxation data. The intermediate is partially folded, with part of the polypeptide chain stably folded and the remainder flexible or unfolded. The folded portion consists of the major elements of native-like secondary structure interacting through the hydrophobic core of the molecule. The 15N relaxation data show that the N-terminal 15 residues are very flexible, and the (1H, 1H) NOESY data show that these residues have no NOE interactions with the remainder of the molecule. The segment of residues 37 to 41 is also flexible. These observations explain why during folding this intermediate most readily forms any of the possible disulphide bonds between Cys5, Cys14 and Cys38, including the non-native 5-14 and 5-38 bonds. The native-like folded portion of the molecule limits the possible disulphide bonds that can be formed to those in the remainder of the polypeptide chain. Also, forming the non-native disulphide bonds need not involve any disruption of that folded structure, as the Cys residues involved are in flexible regions of the molecule. ; save_ save_ref_6 _Saveframe_category citation _Citation_full ; van Mierlo CP, Kemmink J, Neuhaus D, Darby NJ, Creighton TE. 1H NMR analysis of the partly-folded non-native two-disulphide intermediates (30-51,5-14) and (30-51,5-38) in the folding pathway of bovine pancreatic trypsin inhibitor. J Mol Biol. 1994 Jan 21;235(3):1044-61. ; _Citation_title '1H NMR analysis of the partly-folded non-native two-disulphide intermediates (30-51,5-14) and (30-51,5-38) in the folding pathway of bovine pancreatic trypsin inhibitor.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 7507172 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 'van Mierlo' 'C. P.' P. . 2 Kemmink J. . . 3 Neuhaus D. . . 4 Darby 'N. J.' J. . 5 Creighton 'T. E.' E. . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_name_full 'Journal of molecular biology' _Journal_volume 235 _Journal_issue 3 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 1044 _Page_last 1061 _Year 1994 _Details ; The conformational properties of analogues of the (30-51,5-14) and (30-51,5-38) disulphide intermediates in refolding of reduced BPTI, with non-native second disulphide bonds, have been characterized in detail by 1H NMR analysis. They are shown to have partly-folded conformations, very similar to that of the (30-51) one-disulphide intermediate from which they arise during folding. The non-native disulphide bonds are formed in flexible or unfolded parts of the polypeptide chain; they do not disrupt the folded portion nor do they introduce substantial non-native conformation. The conformational properties of these intermediates explain their important roles in the folding pathway. ; save_ ################################## # Molecular system description # ################################## save_(30-51_5-38)Ser_BPTI_folding_intermediate _Saveframe_category molecular_system _Mol_system_name '(30-51, 5-38)Ser BPTI folding intermediate' _Abbreviation_common '(30-51, 5-38)Ser BPTI folding intermediate' _Enzyme_commission_number . loop_ _Mol_system_component_name _Mol_label '(30-51, 5-38)Ser BPTI' $(30-51_5-38)_BPTI stop_ _System_molecular_weight . _System_physical_state native _System_oligomer_state monomer _System_paramagnetic no _System_thiol_state 'all disulfide bound' loop_ _Biological_function ; The species discussed is a stable mimick of the (30-51, 5-38) folding intermediate in BPTI folding ; stop_ _Database_query_date . _Details . save_ ######################## # Monomeric polymers # ######################## save_(30-51_5-38)_BPTI _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class protein _Name_common '(30-51, 5-38)Ser BPTI folding intermediate' _Abbreviation_common '(30-51, 5-38) BPTI' _Molecular_mass . _Mol_thiol_state 'all disulfide bound' _Details . ############################## # Polymer residue sequence # ############################## _Residue_count 58 _Mol_residue_sequence ; RPDFCLEPPYTGPSKARIIR YFYNAKAGLCQTFVYGGCRA KRNNFKSAEDCRRTSGGA ; loop_ _Residue_seq_code _Residue_label 1 ARG 2 PRO 3 ASP 4 PHE 5 CYS 6 LEU 7 GLU 8 PRO 9 PRO 10 TYR 11 THR 12 GLY 13 PRO 14 SER 15 LYS 16 ALA 17 ARG 18 ILE 19 ILE 20 ARG 21 TYR 22 PHE 23 TYR 24 ASN 25 ALA 26 LYS 27 ALA 28 GLY 29 LEU 30 CYS 31 GLN 32 THR 33 PHE 34 VAL 35 TYR 36 GLY 37 GLY 38 CYS 39 ARG 40 ALA 41 LYS 42 ARG 43 ASN 44 ASN 45 PHE 46 LYS 47 SER 48 ALA 49 GLU 50 ASP 51 CYS 52 ARG 53 ARG 54 THR 55 SER 56 GLY 57 GLY 58 ALA stop_ _Sequence_homology_query_date . _Sequence_homology_query_revised_last_date 2005-12-09 save_ #################### # Natural source # #################### save_natural_source _Saveframe_category natural_source loop_ _Mol_label _Organism_name_common _NCBI_taxonomy_ID _Superkingdom _Kingdom _Genus _Species $(30-51_5-38)_BPTI cow 9913 Eukaryota Metazoa Bos taurus stop_ save_ ######################### # Experimental source # ######################### save_experimental_source _Saveframe_category experimental_source loop_ _Mol_label _Production_method _Host_organism_name_common _Genus _Species _Strain _Vector_name _Details $(30-51_5-38)_BPTI 'recombinant technology' 'E. coli' Escherichia coli . . ; See: Darby et al.(1991) FEBS Letters 279, 61 - 64; van Mierlo et al. (1993) J. Mol. Biol. 229, 1125 - 1146; Darby and Creighton (1993) J. Mol. Biol. 232, 873 - 896 ; stop_ save_ ##################################### # Sample contents and methodology # ##################################### ######################## # Sample description # ######################## save_sample_1 _Saveframe_category sample _Sample_type solution _Details ; no salt was added to the sample, pH 4.6, the pH was adjusted by adding small amounts of NaOH ; loop_ _Mol_label _Concentration_value _Concentration_value_units _Concentration_min_value _Concentration_max_value _Isotopic_labeling $(30-51_5-38)_BPTI . mM 1.5 3 . H2O 90 % . . . D2O 10 % . . . stop_ save_ save_sample_2 _Saveframe_category sample _Sample_type solution _Details ; no salt was added to the sample, pH 4.6, the pH was adjusted by adding small amounts of NaOH ; loop_ _Mol_label _Concentration_value _Concentration_value_units _Concentration_min_value _Concentration_max_value _Isotopic_labeling $(30-51_5-38)_BPTI . mM 1.5 3 . D2O 100 % . . . stop_ save_ ############################ # Computer software used # ############################ save_UXNMR _Saveframe_category software _Name UXNMR _Version . loop_ _Task 'data acquisition' 'data processing' stop_ _Details 'Software versions available in 1991 - 1992.' save_ ######################### # Experimental detail # ######################### ################################## # NMR Spectrometer definitions # ################################## save_spectrometer_1 _Saveframe_category NMR_spectrometer _Manufacturer Bruker _Model AMX _Field_strength 500 _Details . save_ ############################# # NMR applied experiments # ############################# save_DQ_=_double_quantum_coherence_experiment_1 _Saveframe_category NMR_applied_experiment _Experiment_name 'DQ = double quantum coherence experiment' _Sample_label . save_ ####################### # Sample conditions # ####################### save_Ex-cond_1 _Saveframe_category sample_conditions _Details . loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units pH 4.6 0.1 n/a temperature 271 0.5 K stop_ save_ #################### # NMR parameters # #################### ############################## # Assigned chemical shifts # ############################## ################################ # Chemical shift referencing # ################################ save_chemical_shift_reference _Saveframe_category chemical_shift_reference _Details . loop_ _Mol_common_name _Atom_type _Atom_isotope_number _Atom_group _Chem_shift_units _Chem_shift_value _Reference_method _Reference_type _External_reference_sample_geometry _External_reference_location _External_reference_axis TSP H 1 'methyl protons' ppm 0.00 internal direct . internal . stop_ save_ ################################### # Assigned chemical shift lists # ################################### ################################################################### # Chemical Shift Ambiguity Index Value Definitions # # # # The values other than 1 are used for those atoms with different # # chemical shifts that cannot be assigned to stereospecific atoms # # or to specific residues or chains. # # # # Index Value Definition # # # # 1 Unique (including isolated methyl protons, # # geminal atoms, and geminal methyl # # groups with identical chemical shifts) # # (e.g. ILE HD11, HD12, HD13 protons) # # 2 Ambiguity of geminal atoms or geminal methyl # # proton groups (e.g. ASP HB2 and HB3 # # protons, LEU CD1 and CD2 carbons, or # # LEU HD11, HD12, HD13 and HD21, HD22, # # HD23 methyl protons) # # 3 Aromatic atoms on opposite sides of # # symmetrical rings (e.g. TYR HE1 and HE2 # # protons) # # 4 Intraresidue ambiguities (e.g. LYS HG and # # HD protons or TRP HZ2 and HZ3 protons) # # 5 Interresidue ambiguities (LYS 12 vs. LYS 27) # # 6 Intermolecular ambiguities (e.g. ASP 31 CA # # in monomer 1 and ASP 31 CA in monomer 2 # # of an asymmetrical homodimer, duplex # # DNA assignments, or other assignments # # that may apply to atoms in one or more # # molecule in the molecular assembly) # # 9 Ambiguous, specific ambiguity not defined # # # ################################################################### save_CSR_1 _Saveframe_category assigned_chemical_shifts _Details ; The N-terminal 15 residues of the molecule are flexible, all peptide bonds were predominantly trans, but a second population of the N-terminal part of the protein, comprising approximately 12 % of the molecules was also present, presumably due to the presence of a cis peptide bond. These signals were so weak, however, that it was not possible to assign this species. The HE1, HE2 and HZ protons of Phe4 resonate between 7.20 -7.40 ppm, it was not possible to determine their exact resonance position due to near coincidence of these resonances. ; loop_ _Sample_label $sample_1 $sample_2 stop_ _Sample_conditions_label $Ex-cond_1 _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name '(30-51, 5-38)Ser BPTI' _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 1 ARG HA H 4.41 0.01 1 2 . 1 ARG HB2 H 1.97 0.01 2 3 . 1 ARG HG2 H 1.73 0.01 1 4 . 1 ARG HG3 H 1.73 0.01 1 5 . 1 ARG HD2 H 3.24 0.01 1 6 . 1 ARG HD3 H 3.24 0.01 1 7 . 1 ARG HE H 7.37 0.01 1 8 . 2 PRO HA H 4.46 0.01 1 9 . 2 PRO HB2 H 1.72 0.01 2 10 . 2 PRO HB3 H 2.23 0.01 2 11 . 2 PRO HG2 H 1.97 0.01 1 12 . 2 PRO HG3 H 1.97 0.01 9 13 . 2 PRO HD2 H 3.57 0.01 2 14 . 2 PRO HD3 H 3.74 0.01 2 15 . 3 ASP H H 8.62 0.01 1 16 . 3 ASP HA H 4.53 0.01 1 17 . 3 ASP HB2 H 2.58 0.01 2 18 . 3 ASP HB3 H 2.67 0.01 2 19 . 4 PHE H H 8.28 0.01 1 20 . 4 PHE HA H 4.60 0.01 1 21 . 4 PHE HB2 H 3.03 0.01 2 22 . 4 PHE HB3 H 3.08 0.01 2 23 . 4 PHE HD1 H 7.23 0.01 1 24 . 4 PHE HD2 H 7.23 0.01 1 25 . 4 PHE HE1 H 7.20 0.01 3 26 . 4 PHE HE2 H 7.40 0.01 3 27 . 4 PHE HZ H 7.20 0.01 1 28 . 5 CYS H H 8.45 0.01 1 29 . 5 CYS HA H 4.60 0.01 1 30 . 5 CYS HB2 H 2.97 0.01 2 31 . 5 CYS HB3 H 3.06 0.01 2 32 . 6 LEU H H 8.54 0.01 1 33 . 6 LEU HA H 4.40 0.01 1 34 . 6 LEU HB2 H 1.61 0.01 1 35 . 6 LEU HB3 H 1.61 0.01 1 36 . 6 LEU HG H 1.61 0.01 1 37 . 6 LEU HD1 H 0.90 0.01 2 38 . 6 LEU HD2 H 0.97 0.01 2 39 . 7 GLU H H 8.48 0.01 1 40 . 7 GLU HA H 4.61 0.01 1 41 . 7 GLU HB2 H 1.87 0.01 2 42 . 7 GLU HB3 H 2.04 0.01 2 43 . 7 GLU HG2 H 2.31 0.01 1 44 . 7 GLU HG3 H 2.31 0.01 1 45 . 8 PRO HA H 4.71 0.01 1 46 . 8 PRO HB2 H 1.90 0.01 2 47 . 8 PRO HB3 H 2.35 0.01 2 48 . 8 PRO HG2 H 2.02 0.01 1 49 . 8 PRO HG3 H 2.02 0.01 1 50 . 8 PRO HD2 H 3.71 0.01 2 51 . 8 PRO HD3 H 3.84 0.01 2 52 . 9 PRO HA H 4.41 0.01 1 53 . 9 PRO HB2 H 1.85 0.01 2 54 . 9 PRO HB3 H 2.27 0.01 2 55 . 9 PRO HG2 H 2.02 0.01 1 56 . 9 PRO HG3 H 2.02 0.01 1 57 . 9 PRO HD2 H 3.63 0.01 2 58 . 9 PRO HD3 H 3.82 0.01 2 59 . 10 TYR H H 8.58 0.01 1 60 . 10 TYR HA H 4.67 0.01 1 61 . 10 TYR HB2 H 2.92 0.01 2 62 . 10 TYR HB3 H 3.09 0.01 2 63 . 10 TYR HD1 H 7.13 0.01 1 64 . 10 TYR HD2 H 7.13 0.01 1 65 . 10 TYR HE1 H 6.78 0.01 1 66 . 10 TYR HE2 H 6.78 0.01 1 67 . 11 THR H H 8.32 0.01 1 68 . 11 THR HA H 4.39 0.01 1 69 . 11 THR HB H 4.27 0.01 1 70 . 11 THR HG2 H 1.11 0.01 1 71 . 12 GLY H H 6.90 0.01 1 72 . 12 GLY HA2 H 3.98 0.01 2 73 . 12 GLY HA3 H 4.08 0.01 2 74 . 13 PRO HA H 4.51 0.01 1 75 . 13 PRO HB2 H 2.00 0.01 2 76 . 13 PRO HB3 H 2.34 0.01 2 77 . 13 PRO HG2 H 2.08 0.01 2 78 . 13 PRO HD2 H 3.66 0.01 1 79 . 13 PRO HD3 H 3.66 0.01 1 80 . 14 SER H H 8.70 0.01 1 81 . 14 SER HA H 4.38 0.01 1 82 . 14 SER HB2 H 3.87 0.01 2 83 . 14 SER HB3 H 3.93 0.01 2 84 . 15 LYS H H 8.51 0.01 1 85 . 15 LYS HA H 4.29 0.01 1 86 . 15 LYS HB2 H 1.73 0.01 9 87 . 15 LYS HB3 H 1.85 0.01 4 88 . 15 LYS HG2 H 1.40 0.01 4 89 . 15 LYS HG3 H 1.40 0.01 4 90 . 15 LYS HD2 H 1.64 0.01 1 91 . 15 LYS HD3 H 1.64 0.01 1 92 . 15 LYS HE2 H 2.91 0.01 1 93 . 15 LYS HE3 H 2.91 0.01 1 94 . 15 LYS HZ H 7.60 0.01 1 95 . 16 ALA H H 8.16 0.01 1 96 . 16 ALA HA H 4.31 0.01 1 97 . 16 ALA HB H 1.38 0.01 1 98 . 17 ARG H H 8.27 0.01 1 99 . 17 ARG HA H 4.26 0.01 1 100 . 17 ARG HB2 H 1.69 0.01 1 101 . 17 ARG HB3 H 1.69 0.01 9 102 . 17 ARG HG2 H 1.50 0.01 2 103 . 17 ARG HG3 H 1.60 0.01 2 104 . 17 ARG HD2 H 3.10 0.01 1 105 . 17 ARG HD3 H 3.10 0.01 1 106 . 17 ARG HE H 7.27 0.01 1 107 . 18 ILE H H 8.67 0.01 1 108 . 18 ILE HA H 4.18 0.01 1 109 . 18 ILE HB H 1.95 0.01 1 110 . 18 ILE HG12 H 1.20 0.01 2 111 . 18 ILE HG13 H 1.55 0.01 2 112 . 18 ILE HG2 H 0.86 0.01 1 113 . 18 ILE HD1 H 0.87 0.01 1 114 . 19 ILE H H 8.57 0.01 1 115 . 19 ILE HA H 4.47 0.01 1 116 . 19 ILE HB H 1.86 0.01 1 117 . 19 ILE HG12 H 1.29 0.01 2 118 . 19 ILE HG13 H 1.44 0.01 2 119 . 19 ILE HG2 H 0.71 0.01 1 120 . 19 ILE HD1 H 0.71 0.01 1 121 . 20 ARG H H 8.32 0.01 1 122 . 20 ARG HA H 4.70 0.01 1 123 . 20 ARG HB2 H 0.95 0.01 2 124 . 20 ARG HB3 H 1.97 0.01 9 125 . 20 ARG HG2 H 1.31 0.01 4 126 . 20 ARG HD2 H 2.87 0.01 9 127 . 20 ARG HD3 H 3.03 0.01 9 128 . 21 TYR H H 8.98 0.01 1 129 . 21 TYR HA H 5.74 0.01 1 130 . 21 TYR HB2 H 2.72 0.01 1 131 . 21 TYR HB3 H 2.72 0.01 1 132 . 21 TYR HD1 H 6.71 0.01 1 133 . 21 TYR HD2 H 6.71 0.01 1 134 . 21 TYR HE1 H 6.78 0.01 1 135 . 21 TYR HE2 H 6.78 0.01 1 136 . 22 PHE H H 9.88 0.01 1 137 . 22 PHE HA H 5.40 0.01 1 138 . 22 PHE HB2 H 3.02 0.01 2 139 . 22 PHE HB3 H 3.18 0.01 2 140 . 22 PHE HD1 H 7.16 0.01 1 141 . 22 PHE HD2 H 7.16 0.01 1 142 . 22 PHE HE1 H 7.27 0.01 1 143 . 22 PHE HE2 H 7.27 0.01 1 144 . 22 PHE HZ H 7.34 0.01 1 145 . 23 TYR H H 9.80 0.01 1 146 . 23 TYR HA H 4.47 0.01 1 147 . 23 TYR HB2 H 3.00 0.01 2 148 . 23 TYR HB3 H 3.09 0.01 2 149 . 23 TYR HD1 H 7.01 0.01 1 150 . 23 TYR HD2 H 7.01 0.01 1 151 . 23 TYR HE1 H 6.55 0.01 1 152 . 23 TYR HE2 H 6.55 0.01 1 153 . 24 ASN H H 8.00 0.01 1 154 . 24 ASN HA H 4.55 0.01 1 155 . 24 ASN HB2 H 2.26 0.01 2 156 . 24 ASN HB3 H 2.91 0.01 2 157 . 24 ASN HD21 H 8.14 0.01 9 158 . 24 ASN HD22 H 7.30 0.01 9 159 . 25 ALA H H 8.51 0.01 1 160 . 25 ALA HA H 3.63 0.01 1 161 . 25 ALA HB H 1.53 0.01 1 162 . 26 LYS H H 8.01 0.01 1 163 . 26 LYS HA H 4.09 0.01 1 164 . 26 LYS HB2 H 1.92 0.01 1 165 . 26 LYS HB3 H 1.92 0.01 1 166 . 26 LYS HG2 H 1.45 0.01 2 167 . 26 LYS HG3 H 1.52 0.01 2 168 . 26 LYS HD2 H 1.73 0.01 1 169 . 26 LYS HD3 H 1.73 0.01 1 170 . 26 LYS HE2 H 3.01 0.01 1 171 . 26 LYS HE3 H 3.01 0.01 1 172 . 26 LYS HZ H 7.65 0.01 1 173 . 27 ALA H H 6.92 0.01 1 174 . 27 ALA HA H 4.29 0.01 1 175 . 27 ALA HB H 1.22 0.01 1 176 . 28 GLY H H 8.18 0.01 1 177 . 28 GLY HA2 H 3.76 0.01 2 178 . 28 GLY HA3 H 3.96 0.01 2 179 . 29 LEU H H 6.94 0.01 1 180 . 29 LEU HA H 4.91 0.01 1 181 . 29 LEU HB2 H 1.38 0.01 2 182 . 29 LEU HB3 H 1.58 0.01 2 183 . 29 LEU HG H 1.47 0.01 1 184 . 29 LEU HD1 H 0.84 0.01 2 185 . 29 LEU HD2 H 0.89 0.01 2 186 . 30 CYS H H 9.27 0.01 1 187 . 30 CYS HA H 5.42 0.01 1 188 . 30 CYS HB2 H 2.60 0.01 2 189 . 30 CYS HB3 H 3.58 0.01 2 190 . 31 GLN H H 9.21 0.01 1 191 . 31 GLN HA H 4.89 0.01 1 192 . 31 GLN HB2 H 1.74 0.01 2 193 . 31 GLN HB3 H 2.10 0.01 2 194 . 31 GLN HG2 H 2.05 0.01 2 195 . 31 GLN HG3 H 2.27 0.01 2 196 . 31 GLN HE21 H 7.62 0.01 9 197 . 31 GLN HE22 H 7.24 0.01 9 198 . 32 THR H H 8.30 0.01 1 199 . 32 THR HA H 4.86 0.01 1 200 . 32 THR HB H 4.03 0.01 1 201 . 32 THR HG2 H 0.78 0.01 1 202 . 33 PHE H H 8.87 0.01 1 203 . 33 PHE HA H 4.85 0.01 1 204 . 33 PHE HB2 H 2.96 0.01 2 205 . 33 PHE HB3 H 3.15 0.01 2 206 . 33 PHE HD1 H 7.12 0.01 1 207 . 33 PHE HD2 H 7.12 0.01 1 208 . 33 PHE HE1 H 7.29 0.01 9 209 . 33 PHE HE2 H 7.29 0.01 9 210 . 33 PHE HZ H 7.19 0.01 9 211 . 34 VAL H H 8.52 0.01 1 212 . 34 VAL HA H 4.07 0.01 1 213 . 34 VAL HB H 1.91 0.01 1 214 . 34 VAL HG1 H 0.81 0.01 2 215 . 34 VAL HG2 H 0.85 0.01 2 216 . 35 TYR H H 8.74 0.01 1 217 . 35 TYR HA H 4.36 0.01 1 218 . 35 TYR HB2 H 2.47 0.01 2 219 . 35 TYR HB3 H 2.79 0.01 2 220 . 35 TYR HD1 H 7.05 0.01 1 221 . 35 TYR HD2 H 7.05 0.01 1 222 . 35 TYR HE1 H 6.87 0.01 1 223 . 35 TYR HE2 H 6.87 0.01 1 224 . 36 GLY H H 8.23 0.01 1 225 . 36 GLY HA2 H 3.74 0.01 2 226 . 36 GLY HA3 H 3.88 0.01 2 227 . 37 GLY H H 7.52 0.01 9 228 . 37 GLY HA2 H 3.81 0.01 9 229 . 37 GLY HA3 H 3.97 0.01 9 230 . 38 CYS H H 8.77 0.01 9 231 . 38 CYS HA H 4.58 0.01 9 232 . 38 CYS HB2 H 3.09 0.01 9 233 . 38 CYS HB3 H 3.18 0.01 9 234 . 40 ALA H H 8.24 0.01 1 235 . 40 ALA HA H 4.24 0.01 1 236 . 40 ALA HB H 1.34 0.01 1 237 . 41 LYS H H 8.24 0.01 9 238 . 41 LYS HA H 4.22 0.01 1 239 . 41 LYS HB2 H 1.68 0.01 9 240 . 41 LYS HB3 H 1.81 0.01 9 241 . 42 ARG H H 8.11 0.01 1 242 . 42 ARG HA H 4.30 0.01 1 243 . 42 ARG HB2 H 1.80 0.01 9 244 . 42 ARG HG2 H 1.56 0.01 9 245 . 42 ARG HD2 H 2.81 0.01 9 246 . 42 ARG HD3 H 2.93 0.01 9 247 . 42 ARG HE H 7.17 0.01 9 248 . 43 ASN H H 8.65 0.01 1 249 . 43 ASN HA H 4.66 0.01 1 250 . 43 ASN HB2 H 2.75 0.01 2 251 . 43 ASN HB3 H 2.87 0.01 2 252 . 43 ASN HD21 H 7.94 0.01 9 253 . 43 ASN HD22 H 7.46 0.01 9 254 . 44 ASN H H 7.88 0.01 1 255 . 44 ASN HA H 5.36 0.01 1 256 . 44 ASN HB2 H 2.76 0.01 1 257 . 44 ASN HB3 H 2.76 0.01 1 258 . 44 ASN HD21 H 7.72 0.01 9 259 . 44 ASN HD22 H 6.79 0.01 9 260 . 45 PHE H H 9.49 0.01 1 261 . 45 PHE HA H 5.07 0.01 1 262 . 45 PHE HB2 H 2.72 0.01 2 263 . 45 PHE HB3 H 3.41 0.01 2 264 . 45 PHE HD1 H 7.23 0.01 1 265 . 45 PHE HD2 H 7.23 0.01 1 266 . 45 PHE HE1 H 7.49 0.01 1 267 . 45 PHE HE2 H 7.49 0.01 1 268 . 45 PHE HZ H 7.36 0.01 1 269 . 46 LYS H H 9.94 0.01 1 270 . 46 LYS HA H 4.40 0.01 1 271 . 46 LYS HB2 H 2.04 0.01 1 272 . 46 LYS HB3 H 2.04 0.01 1 273 . 46 LYS HG2 H 1.56 0.01 1 274 . 46 LYS HG3 H 1.56 0.01 9 275 . 46 LYS HD2 H 1.77 0.01 9 276 . 46 LYS HD3 H 1.77 0.01 9 277 . 46 LYS HE2 H 3.04 0.01 9 278 . 46 LYS HE3 H 3.04 0.01 9 279 . 46 LYS HZ H 7.72 0.01 9 280 . 47 SER H H 7.49 0.01 1 281 . 47 SER HA H 4.59 0.01 1 282 . 47 SER HB2 H 3.84 0.01 2 283 . 47 SER HB3 H 4.11 0.01 2 284 . 48 ALA H H 8.35 0.01 1 285 . 48 ALA HA H 3.00 0.01 1 286 . 48 ALA HB H 1.02 0.01 1 287 . 49 GLU H H 8.76 0.01 1 288 . 49 GLU HA H 3.84 0.01 1 289 . 49 GLU HB2 H 1.80 0.01 2 290 . 49 GLU HB3 H 1.99 0.01 2 291 . 49 GLU HG2 H 2.20 0.01 2 292 . 49 GLU HG3 H 2.35 0.01 2 293 . 50 ASP H H 7.89 0.01 1 294 . 50 ASP HA H 4.28 0.01 1 295 . 50 ASP HB2 H 2.72 0.01 2 296 . 50 ASP HB3 H 2.86 0.01 2 297 . 51 CYS H H 7.11 0.01 1 298 . 51 CYS HA H 1.85 0.01 1 299 . 51 CYS HB2 H 2.71 0.01 2 300 . 51 CYS HB3 H 3.09 0.01 2 301 . 52 ARG H H 8.69 0.01 1 302 . 52 ARG HA H 3.76 0.01 1 303 . 52 ARG HB2 H 1.74 0.01 1 304 . 52 ARG HB3 H 1.74 0.01 1 305 . 52 ARG HG2 H 1.49 0.01 2 306 . 52 ARG HG3 H 1.66 0.01 2 307 . 52 ARG HD2 H 3.10 0.01 1 308 . 52 ARG HD3 H 3.10 0.01 1 309 . 52 ARG HE H 7.44 0.01 1 310 . 52 ARG HH11 H 6.71 0.01 9 311 . 52 ARG HH12 H 6.94 0.01 9 312 . 53 ARG H H 8.05 0.01 1 313 . 53 ARG HA H 3.96 0.01 1 314 . 53 ARG HB2 H 1.81 0.01 2 315 . 53 ARG HB3 H 1.89 0.01 2 316 . 53 ARG HG2 H 1.58 0.01 2 317 . 53 ARG HG3 H 1.71 0.01 2 318 . 53 ARG HD2 H 3.20 0.01 1 319 . 53 ARG HD3 H 3.20 0.01 1 320 . 53 ARG HE H 7.38 0.01 1 321 . 54 THR H H 7.47 0.01 1 322 . 54 THR HA H 4.14 0.01 1 323 . 54 THR HB H 3.98 0.01 1 324 . 54 THR HG2 H 1.38 0.01 1 325 . 55 SER H H 7.90 0.01 1 326 . 55 SER HA H 4.09 0.01 1 327 . 55 SER HB2 H 3.11 0.01 1 328 . 55 SER HB3 H 3.11 0.01 1 329 . 56 GLY H H 7.93 0.01 1 330 . 56 GLY HA2 H 3.80 0.01 2 331 . 56 GLY HA3 H 3.97 0.01 2 332 . 57 GLY H H 8.12 0.01 1 333 . 57 GLY HA2 H 3.83 0.01 2 334 . 57 GLY HA3 H 3.98 0.01 2 335 . 58 ALA H H 7.95 0.01 1 336 . 58 ALA HA H 4.19 0.01 1 337 . 58 ALA HB H 1.39 0.01 1 stop_ save_