data_6051 ####################### # Entry information # ####################### save_entry_information _Saveframe_category entry_information _Entry_title ; 1H, 13C and 15N resonance assignments for methionine sulfoxide reductase B from Neisseria gonorroeae ; _BMRB_accession_number 6051 _BMRB_flat_file_name bmr6051.str _Entry_type original _Submission_date 2003-12-16 _Accession_date 2003-12-16 _Entry_origination author _NMR_STAR_version 2.1.1 _Experimental_method NMR _Details . loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Thureau Aurelien . . 2 Olry Alexandre . . 3 Coudevylle Nicolas . . 4 Azza Said . . 5 Boshi-Muller Sandrine . . 6 Branlant Guy . . 7 Cung 'Manh Thong' . . stop_ loop_ _Saveframe_category_type _Saveframe_category_type_count assigned_chemical_shifts 1 stop_ loop_ _Data_type _Data_type_count "1H chemical shifts" 600 "13C chemical shifts" 465 "15N chemical shifts" 127 stop_ loop_ _Revision_date _Revision_keyword _Revision_author _Revision_detail 2004-11-29 original author . stop_ _Original_release_date 2004-11-29 save_ ############################# # Citation for this entry # ############################# save_entry_citation _Saveframe_category entry_citation _Citation_full . _Citation_title ; Letter to the Editor: 1H, 13C and 15N resonance assignments of the methionine sulfoxide reductase B from Neisseria meningitidis ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Thureau Aurelien . . 2 Olry Alexandre . . 3 Coudevylle Nicolas . . 4 Azza Said . . 5 Boschi-Muller Sandrine . . 6 Branlant Guy . . 7 Cung 'Manh Thong' . . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_volume 30 _Journal_issue 2 _Journal_CSD . _Book_chapter_title . _Book_volume . _Book_series . _Book_ISBN . _Conference_state_province . _Conference_abstract_number . _Page_first 223 _Page_last 224 _Year 2004 _Details . loop_ _Keyword 'methionine sulfoxyde reductase B' 'NMR assignment' 'Neisseria meningitidis' stop_ save_ ####################################### # Cited references within the entry # ####################################### save_ref_1 _Saveframe_category citation _Citation_full ; Antoine M. et al. (2003) J. Biol. Chem., 278, 45352-45357 ; _Citation_title 'Kinetic characterization of the chemical steps involved in the catalytic mechanism of methionine sulfoxide reductase A from Neisseria meningitidis.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 12954610 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Antoine Mathias . . 2 Boschi-Muller Sandrine . . 3 Branlant Guy . . stop_ _Journal_abbreviation 'J. Biol. Chem.' _Journal_name_full 'The Journal of biological chemistry' _Journal_volume 278 _Journal_issue 46 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 45352 _Page_last 45357 _Year 2003 _Details ; Oxidation of methionine into methionine sulfoxide is associated with many pathologies and is described to exert regulatory effects on protein functions. Two classes of methionine sulfoxide reductases, called MsrA and MsrB, have been described to reduce the S and the R isomers of the sulfoxide of methionine sulfoxide back to methionine, respectively. Although MsrAs and MsrBs display quite different x-ray structures, they share a similar, new catalytic mechanism that proceeds via the sulfenic acid chemistry and that includes at least three chemical steps with 1) the formation of a sulfenic acid intermediate and the concomitant release of methionine; 2) the formation of an intra-disulfide bond; and 3) the reduction of the disulfide bond by thioredoxin. In the present study, it is shown that for the Neisseria meningitidis MsrA, 1) the rate-limiting step is associated with the reduction of the Cys-51/Cys-198 disulfide MsrA bond by thioredoxin; 2) the formation of the sulfenic acid intermediate is very efficient, thus suggesting catalytic assistance via amino acids of the active site; 3) the rate-determining step in the formation of the Cys-51/Cys-198 disulfide bond is that leading to the formation of the sulfenic intermediate on Cys-51; and 4) the apparent affinity constant for methionine sulfoxide in the methionine sulfoxide reductase step is 80-fold higher than the Km value determined under steady-state conditions. ; save_ save_ref_2 _Saveframe_category citation _Citation_full ; Bartels C. et al. (1995) J. Biomol. NMR, 6, 1-10 ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref_3 _Saveframe_category citation _Citation_full ; Boschi-Muller S. et al. (2000) J. Biol. Chem, 275, 35908-35913 ; _Citation_title 'A sulfenic acid enzyme intermediate is involved in the catalytic mechanism of peptide methionine sulfoxide reductase from Escherichia coli.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 10964927 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Boschi-Muller S. . . 2 Azza S. . . 3 Sanglier-Cianferani S. . . 4 Talfournier F. . . 5 'Van Dorsselear' A. . . 6 Branlant G. . . stop_ _Journal_abbreviation 'J. Biol. Chem.' _Journal_name_full 'The Journal of biological chemistry' _Journal_volume 275 _Journal_issue 46 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 35908 _Page_last 35913 _Year 2000 _Details ; Methionine oxidation into methionine sulfoxide is known to be involved in many pathologies and to exert regulatory effects on proteins. This oxidation can be reversed by a ubiquitous monomeric enzyme, the peptide methionine sulfoxide reductase (MsrA), whose activity in vivo requires the thioredoxin-regenerating system. The proposed chemical mechanism of Escherichia coli MsrA involves three Cys residues (positions 51, 198, and 206). A fourth Cys (position 86) is not important for catalysis. In the absence of a reducing system, 2 mol of methionine are formed per mole of enzyme for wild type and Cys-86 --> Ser mutant MsrA, whereas only 1 mol is formed for mutants in which either Cys-198 or Cys-206 is mutated. Reduction of methionine sulfoxide is shown to proceed through the formation of a sulfenic acid intermediate. This intermediate has been characterized by chemical probes and mass spectrometry analyses. Together, the results support a three-step chemical mechanism in vivo: 1) Cys-51 attacks the sulfur atom of the sulfoxide substrate leading, via a rearrangement, to the formation of a sulfenic acid intermediate on Cys-51 and release of 1 mol of methionine/mol of enzyme; 2) the sulfenic acid is then reduced via a double displacement mechanism involving formation of a disulfide bond between Cys-51 and Cys-198, followed by formation of a disulfide bond between Cys-198 and Cys-206, which liberates Cys-51, and 3) the disulfide bond between Cys-198 and Cys-206 is reduced by thioredoxin-dependent recycling system process. ; save_ save_ref_4 _Saveframe_category citation _Citation_full ; Cornilescu G. et al. (1999) J. Biomol. NMR, 13, 289-302 ; _Citation_title 'Protein backbone angle restraints from searching a database for chemical shift and sequence homology.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 10212987 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Cornilescu G . . 2 Delaglio F . . 3 Bax A . . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of biomolecular NMR' _Journal_volume 13 _Journal_issue 3 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 289 _Page_last 302 _Year 1999 _Details ; Chemical shifts of backbone atoms in proteins are exquisitely sensitive to local conformation, and homologous proteins show quite similar patterns of secondary chemical shifts. The inverse of this relation is used to search a database for triplets of adjacent residues with secondary chemical shifts and sequence similarity which provide the best match to the query triplet of interest. The database contains 13C alpha, 13C beta, 13C', 1H alpha and 15N chemical shifts for 20 proteins for which a high resolution X-ray structure is available. The computer program TALOS was developed to search this database for strings of residues with chemical shift and residue type homology. The relative importance of the weighting factors attached to the secondary chemical shifts of the five types of resonances relative to that of sequence similarity was optimized empirically. TALOS yields the 10 triplets which have the closest similarity in secondary chemical shift and amino acid sequence to those of the query sequence. If the central residues in these 10 triplets exhibit similar phi and psi backbone angles, their averages can reliably be used as angular restraints for the protein whose structure is being studied. Tests carried out for proteins of known structure indicate that the root-mean-square difference (rmsd) between the output of TALOS and the X-ray derived backbone angles is about 15 degrees. Approximately 3% of the predictions made by TALOS are found to be in error. ; save_ save_ref_5 _Saveframe_category citation _Citation_full ; Grimaud et al. (2001) J. Biol. Chem, 276, 48915-48920 ; _Citation_title 'Repair of oxidized proteins. Identification of a new methionine sulfoxide reductase.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 11677230 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Grimaud R. . . 2 Ezraty B. . . 3 Mitchell 'J. K.' K. . 4 Lafitte D. . . 5 Briand C. . . 6 Derrick 'P. J.' J. . 7 Barras F. . . stop_ _Journal_abbreviation 'J. Biol. Chem.' _Journal_name_full 'The Journal of biological chemistry' _Journal_volume 276 _Journal_issue 52 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 48915 _Page_last 48920 _Year 2001 _Details ; Oxidation of methionine residues to methionine sulfoxide can lead to inactivation of proteins. Methionine sulfoxide reductase (MsrA) has been known for a long time, and its repairing function well characterized. Here we identify a new methionine sulfoxide reductase, which we referred to as MsrB, the gene of which is present in genomes of eubacteria, archaebacteria, and eucaryotes. The msrA and msrB genes exhibit no sequence similarity and, in some genomes, are fused. The Escherichia coli MsrB protein (currently predicted to be encoded by an open reading frame of unknown function named yeaA) was used for genetic, enzymatic, and mass spectrometric investigations. Our in vivo study revealed that msrB is required for cadmium resistance of E. coli, a carcinogenic compound that induces oxidative stress. Our in vitro studies, showed that (i) MsrB and MsrA enzymes reduce free methionine sulfoxide with turn-over rates of 0.6 min(-1) and 20 min(-1), respectively, (ii) MsrA and MsrB act on oxidized calmodulin, each by repairing four to six of the eight methionine sulfoxide residues initially present, and (iii) simultaneous action of both MsrA and MsrB allowed full reduction of oxidized calmodulin. A possibility is that these two ubiquitous methionine sulfoxide reductases exhibit different substrate specificity. ; save_ save_ref_6 _Saveframe_category citation _Citation_full ; Lowther, W.T. et al. (2002) Nat. Struct. Biol., 9, 348-352 ; _Citation_title 'The mirrored methionine sulfoxide reductases of Neisseria gonorrhoeae pilB.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 11938352 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Lowther 'W. Todd' T. . 2 Weissbach Herbert . . 3 Etienne Frantzy . . 4 Brot Nathan . . 5 Matthews 'Brian W.' W. . stop_ _Journal_abbreviation 'Nat. Struct. Biol.' _Journal_name_full 'Nature structural biology' _Journal_volume 9 _Journal_issue 5 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 348 _Page_last 352 _Year 2002 _Details ; Methionine sulfoxide reductases (Msr) protect against oxidative damage that can contribute to cell death. The tandem Msr domains (MsrA and MsrB) of the pilB protein from Neisseria gonorrhoeae each reduce different epimeric forms of methionine sulfoxide. The overall fold of the MsrB domain revealed by the 1.85 A crystal structure shows no resemblance to the previously determined MsrA structures from other organisms. Despite the lack of homology, the active sites show approximate mirror symmetry. In each case, conserved amino acid motifs mediate the stereo-specific recognition and reduction of the substrate. Unlike the MsrA domain, the MsrB domain activates the cysteine or selenocysteine nucleophile through a unique Cys-Arg-Asp/Glu catalytic triad. The collapse of the reaction intermediate most likely results in the formation of a sulfenic or selenenic acid moiety. Regeneration of the active site occurs through a series of thiol-disulfide exchange steps involving another active site Cys residue and thioredoxin. These observations have broad implications for modular catalysis, antibiotic drug design and continuing longevity studies in mammals. ; save_ save_ref_7 _Saveframe_category citation _Citation_full ; Moskovitz J. et al. (2000) J. Biol. Chem., 275, 14167-14172 ; _Citation_title 'Identification and characterization of a putative active site for peptide methionine sulfoxide reductase (MsrA) and its substrate stereospecificity.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 10799493 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Moskovitz J. . . 2 Poston 'J. M.' M. . 3 Berlett 'B. S.' S. . 4 Nosworthy 'N. J.' J. . 5 Szczepanowski R. . . 6 Stadtman 'E. R.' R. . stop_ _Journal_abbreviation 'J. Biol. Chem.' _Journal_name_full 'The Journal of biological chemistry' _Journal_volume 275 _Journal_issue 19 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 14167 _Page_last 14172 _Year 2000 _Details ; Peptide methionine sulfoxide reductases (MsrA) from many different organisms share a consensus amino acid sequence (GCFWG) that could play an important role in their active site. Site-directed single substitution of each of these amino acids except glycines in the yeast MsrA resulted in total loss of enzyme activity. Nevertheless, all the recombinant MsrA mutants and native proteins had a very similar circular dichroism spectrum. The demonstration that either treatment with iodoacetamide or replacement of the motif cysteine with serine leads to inactivation of the enzyme underscores the singular importance of cysteine residues in the activity of MsrA. The recombinant yeast MsrA was used for general characterization of the enzyme. Its K(m) value was similar to the bovine MsrA and appreciably lower than the K(m) of the bacterial enzyme. Also, it was shown that the enzymatic activity increased dramatically with increasing ionic strength. The recombinant yeast MsrA activity and the reduction activity of free methionine sulfoxide(s) were stereoselective toward the L-methionine S-sulfoxide and S-methyl p-tolyl sulfoxide. It was established that a methionine auxotroph yeast strain could grow on either form of L-methionine sulfoxide. ; save_ save_ref_8 _Saveframe_category citation _Citation_full ; Olry A. et al. (2002) J. Biol. Chem., 277, 12016-12022 ; _Citation_title 'Characterization of the methionine sulfoxide reductase activities of PILB, a probable virulence factor from Neisseria meningitidis.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 11812798 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Olry Alexandre . . 2 Boschi-Muller Sandrine . . 3 Marraud Michel . . 4 Sanglier-Cianferani Sarah . . 5 'Van Dorsselear' Alain . . 6 Branlant Guy . . stop_ _Journal_abbreviation 'J. Biol. Chem.' _Journal_name_full 'The Journal of biological chemistry' _Journal_volume 277 _Journal_issue 14 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 12016 _Page_last 12022 _Year 2002 _Details ; PILB has been described as being involved in the virulence of bacteria of Neisseria genus. The PILB protein is composed of three subdomains. In the present study, the central subdomain (PILB-MsrA), the C terminus subdomain (PILB-MsrB), and the fused subdomain (PILB-MsrA/MsrB) of N. meningitidis were produced as folded entities. The central subdomain shows a methionine sulfoxide reductase A (MsrA) activity, whereas PILB-MsrB displays a methionine sulfoxide reductase B (MsrB) activity. The catalytic mechanism of PILB-MsrB can be divided into two steps: 1) an attack of the Cys-494 on the sulfur atom of the sulfoxide substrate, leading to formation of a sulfenic acid intermediate and release of 1 mol of methionine/mol of enzyme and 2) a regeneration of Cys-494 via formation of an intradisulfide bond with Cys-439 followed by reduction with thioredoxin. The study also shows that 1) MsrA and MsrB display opposite stereoselectivities toward the sulfoxide function; 2) the active sites of both Msrs, particularly MsrB, are rather adapted for binding protein-bound MetSO more efficiently than free MetSO; 3) the carbon Calpha is not a determining factor for efficient binding to both Msrs; and 4) the presence of the sulfoxide function is a prerequisite for binding to Msrs. The fact that the two Msrs exhibit opposite stereoselectivities argues for a structure of the active site of MsrBs different from that of MsrAs. This is further supported by the absence of sequence homology between the two Msrs in particular around the cysteine that is involved in formation of the sulfenic acid derivative. The fact that the catalytic mechanism takes place through formation of a sulfenic acid intermediate for both Msrs supports the idea that sulfenic acid chemistry is a general feature in the reduction of sulfoxides by thiols. ; save_ save_ref_9 _Saveframe_category citation _Citation_full ; Sharov V.S. et al (1999) FEBS lett., 455, 247-250 ; _Citation_title 'Diastereoselective reduction of protein-bound methionine sulfoxide by methionine sulfoxide reductase.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 10437782 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Sharov 'V. S.' S. . 2 Ferrington 'D. A.' A. . 3 Squier 'T. C.' C. . 4 Schneich C. . . stop_ _Journal_abbreviation 'FEBS Lett.' _Journal_name_full 'FEBS letters' _Journal_volume 455 _Journal_issue 3 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 247 _Page_last 250 _Year 1999 _Details ; Methionine sulfoxide (MetSO) in calmodulin (CaM) was previously shown to be a substrate for bovine liver peptide methionine sulfoxide reductase (pMSR, EC 1.8.4.6), which can partially recover protein structure and function of oxidized CaM in vitro. Here, we report for the first time that pMSR selectively reduces the D-sulfoxide diastereomer of CaM-bound L-MetSO (L-Met-D-SO). After exhaustive reduction by pMSR, the ratio of L-Met-D-SO to L-Met-L-SO decreased to about 1:25 for hydrogen peroxide-oxidized CaM, and to about 1:10 for free MetSO. The accumulation of MetSO upon oxidative stress and aging in vivo may be related to incomplete, diastereoselective, repair by pMSR. ; save_ save_ref_10 _Saveframe_category citation _Citation_full ; Zheng D. et al. (2003) J. Biomol. NMR, 27, 183-184 ; _Citation_title '1H, 13C and 15N resonance assignments for methionine sulfoxide reductase B from Bacillus subtilis.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 12913416 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Zheng Deyou . . 2 Cort 'John R.' R. . 3 Chiang YiWen . . 4 Acton Thomas . . 5 Kennedy 'Michael A.' A. . 6 Montelione 'Gaetano T.' T. . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of biomolecular NMR' _Journal_volume 27 _Journal_issue 2 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 183 _Page_last 184 _Year 2003 _Details . save_ ################################## # Molecular system description # ################################## save_system_msrB _Saveframe_category molecular_system _Mol_system_name 'methionine sulfoxide reductase B' _Abbreviation_common msrB _Enzyme_commission_number . loop_ _Mol_system_component_name _Mol_label msrB $MsrB stop_ _System_molecular_weight . _System_physical_state reduced _System_oligomer_state monomer _System_paramagnetic no _System_thiol_state 'all free' _Database_query_date . _Details . save_ ######################## # Monomeric polymers # ######################## save_MsrB _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class protein _Name_common 'methionine sulfoxide reductase B' _Abbreviation_common MsrB _Molecular_mass . _Mol_thiol_state 'all free' _Details ; We work on N. meningitidis MsrB protein but the numbering of amino acid residues is based on those of the E. coli MsrB for alignment. So the first residue of the N. meningitidis MsrB protein is the number 0. We have also a gap at the residue 113 (Glycine) which leads to the two residue numbers Gly 113 and Gly 113a. All these facts will be outlined in the publication. ; ############################## # Polymer residue sequence # ############################## _Residue_count 146 _Mol_residue_sequence ; TYKKPSDAELKRTLTEEQYQ VTQNSATEYAFSHEYDHLFK PGIYVDVVSGEPLFSSADKY DSGCGWPSFTRPIDAKSVTE HDDFSYNMRRTEVRSHAADS HLGHVFPDGPRDKGGLRYCI NGASLKFIPLEQMDAAGYGA LKSKVK ; loop_ _Residue_seq_code _Residue_author_seq_code _Residue_label 1 0 THR 2 1 TYR 3 2 LYS 4 3 LYS 5 4 PRO 6 5 SER 7 6 ASP 8 7 ALA 9 8 GLU 10 9 LEU 11 10 LYS 12 11 ARG 13 12 THR 14 13 LEU 15 14 THR 16 15 GLU 17 16 GLU 18 17 GLN 19 18 TYR 20 19 GLN 21 20 VAL 22 21 THR 23 22 GLN 24 23 ASN 25 24 SER 26 25 ALA 27 26 THR 28 27 GLU 29 28 TYR 30 29 ALA 31 30 PHE 32 31 SER 33 32 HIS 34 33 GLU 35 34 TYR 36 35 ASP 37 36 HIS 38 37 LEU 39 38 PHE 40 39 LYS 41 40 PRO 42 41 GLY 43 42 ILE 44 43 TYR 45 44 VAL 46 45 ASP 47 46 VAL 48 47 VAL 49 48 SER 50 49 GLY 51 50 GLU 52 51 PRO 53 52 LEU 54 53 PHE 55 54 SER 56 55 SER 57 56 ALA 58 57 ASP 59 58 LYS 60 59 TYR 61 60 ASP 62 61 SER 63 62 GLY 64 63 CYS 65 64 GLY 66 65 TRP 67 66 PRO 68 67 SER 69 68 PHE 70 69 THR 71 70 ARG 72 71 PRO 73 72 ILE 74 73 ASP 75 74 ALA 76 75 LYS 77 76 SER 78 77 VAL 79 78 THR 80 79 GLU 81 80 HIS 82 81 ASP 83 82 ASP 84 83 PHE 85 84 SER 86 85 TYR 87 86 ASN 88 87 MET 89 88 ARG 90 89 ARG 91 90 THR 92 91 GLU 93 92 VAL 94 93 ARG 95 94 SER 96 95 HIS 97 96 ALA 98 97 ALA 99 98 ASP 100 99 SER 101 100 HIS 102 101 LEU 103 102 GLY 104 103 HIS 105 104 VAL 106 105 PHE 107 106 PRO 108 107 ASP 109 108 GLY 110 109 PRO 111 110 ARG 112 111 ASP 113 112 LYS 114 113 GLY 115 113a GLY 116 114 LEU 117 115 ARG 118 116 TYR 119 117 CYS 120 118 ILE 121 129 ASN 122 120 GLY 123 121 ALA 124 122 SER 125 123 LEU 126 124 LYS 127 125 PHE 128 126 ILE 129 127 PRO 130 128 LEU 131 139 GLU 132 130 GLN 133 131 MET 134 132 ASP 135 133 ALA 136 134 ALA 137 135 GLY 138 136 TYR 139 137 GLY 140 138 ALA 141 149 LEU 142 140 LYS 143 141 SER 144 142 LYS 145 143 VAL 146 144 LYS stop_ _Sequence_homology_query_date . _Sequence_homology_query_revised_last_date 2015-01-28 loop_ _Database_name _Database_accession_code _Database_entry_mol_name _Sequence_query_to_submitted_percentage _Sequence_subject_length _Sequence_identity _Sequence_positive _Sequence_homology_expectation_value PDB 3HCG "Structure Of The C-terminal Domain (msrb) Of Neisseria Meningitidis Pilb (reduced Form)" 100.00 146 98.63 98.63 1.20e-101 PDB 3HCH "Structure Of The C-terminal Domain (msrb) Of Neisseria Meningitidis Pilb (complex With Substrate)" 100.00 146 98.63 98.63 9.22e-102 EMBL CAM07595 "peptide methionine sulfoxide reductase [Neisseria meningitidis Z2491]" 100.00 522 100.00 100.00 2.21e-99 EMBL CAM09346 "peptide methionine sulfoxide reductase [Neisseria meningitidis FAM18]" 100.00 522 100.00 100.00 2.21e-99 EMBL CAX49031 "peptide methionine sulfoxide reductase MsrA/MsrB [includes: thioredoxin, peptide methionine sulfoxide reductase MsrA (protein-m" 100.00 522 100.00 100.00 2.21e-99 EMBL CBA03711 "Peptide methionine sulfoxide reductase [Neisseria meningitidis alpha153]" 100.00 422 98.63 99.32 2.27e-99 EMBL CBA06064 "Peptide-methionine (S)-S-oxide reductase [Neisseria meningitidis alpha275]" 100.00 371 100.00 100.00 1.87e-101 GB AAF40515 "peptide methionine sulfoxide reductase [Neisseria meningitidis MC58]" 100.00 522 99.32 99.32 9.17e-99 GB AAL89752 "methionine sulfoxide reductase PilB [Neisseria gonorrhoeae]" 100.00 522 97.26 98.63 1.19e-96 GB AAW90666 "putative peptide methionine sulfoxide reductase [Neisseria gonorrhoeae FA 1090]" 100.00 522 97.26 97.95 4.35e-96 GB ABX72275 "peptide methionine sulfoxide reductase [Neisseria meningitidis 053442]" 100.00 522 100.00 100.00 2.21e-99 GB ACF30776 "methionine sulfoxide reductase PilB [Neisseria gonorrhoeae NCCP11945]" 100.00 532 97.95 98.63 4.10e-97 REF NP_273110 "trifunctional thioredoxin/methionine sulfoxide reductase A/B protein [Neisseria meningitidis MC58]" 100.00 522 99.32 99.32 9.17e-99 REF WP_002216163 "methionine sulfoxide reductase [Neisseria meningitidis]" 100.00 522 100.00 100.00 2.21e-99 REF WP_002218473 "peptide methionine sulfoxide reductase msrA/msrB, partial [Neisseria meningitidis]" 100.00 488 100.00 100.00 5.27e-100 REF WP_002221795 "methionine sulfoxide reductase [Neisseria meningitidis]" 100.00 522 99.32 99.32 1.02e-98 REF WP_002223263 "methionine sulfoxide reductase [Neisseria meningitidis]" 100.00 522 99.32 100.00 6.15e-99 SP P14930 "RecName: Full=Peptide methionine sulfoxide reductase MsrA/MsrB; Includes: RecName: Full=Thioredoxin; Includes: RecName: Full=Pe" 100.00 522 97.26 98.63 1.19e-96 SP Q9JWM8 "RecName: Full=Peptide methionine sulfoxide reductase MsrA/MsrB; Includes: RecName: Full=Thioredoxin; Includes: RecName: Full=Pe" 100.00 522 100.00 100.00 2.21e-99 SP Q9K1N8 "RecName: Full=Peptide methionine sulfoxide reductase MsrA/MsrB; Includes: RecName: Full=Thioredoxin; Includes: RecName: Full=Pe" 100.00 522 99.32 99.32 9.17e-99 stop_ save_ #################### # Natural source # #################### save_natural_source _Saveframe_category natural_source loop_ _Mol_label _Organism_name_common _NCBI_taxonomy_ID _Superkingdom _Kingdom _Genus _Species $MsrB 'Neisseria meningitidis' 487 Eubacteria . Neisseria meningitidis stop_ save_ ######################### # Experimental source # ######################### save_experimental_source _Saveframe_category experimental_source loop_ _Mol_label _Production_method _Host_organism_name_common _Genus _Species _Strain _Vector_name $MsrB 'recombinant technology' . . . . . stop_ save_ ##################################### # Sample contents and methodology # ##################################### ######################## # Sample description # ######################## save_sample_1 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $MsrB 2 mM '[U-13C; U-15N]' stop_ save_ ######################### # Experimental detail # ######################### ################################## # NMR Spectrometer definitions # ################################## save_spectrometer_1 _Saveframe_category NMR_spectrometer _Manufacturer Bruker _Model DRX _Field_strength 600 _Details . save_ save_spectrometer_2 _Saveframe_category NMR_spectrometer _Manufacturer Varian _Model Inova _Field_strength 800 _Details . save_ ############################# # NMR applied experiments # ############################# save_1H-15N_HSQC_1 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N HSQC' _Sample_label $sample_1 save_ save_HNCA_2 _Saveframe_category NMR_applied_experiment _Experiment_name HNCA _Sample_label $sample_1 save_ save_HN(CO)CA_3 _Saveframe_category NMR_applied_experiment _Experiment_name HN(CO)CA _Sample_label $sample_1 save_ save_HNCO_4 _Saveframe_category NMR_applied_experiment _Experiment_name HNCO _Sample_label $sample_1 save_ save_HN(CA)CO_5 _Saveframe_category NMR_applied_experiment _Experiment_name HN(CA)CO _Sample_label $sample_1 save_ save_CBCANH_6 _Saveframe_category NMR_applied_experiment _Experiment_name CBCANH _Sample_label $sample_1 save_ save_CBCA(CO)NH_7 _Saveframe_category NMR_applied_experiment _Experiment_name CBCA(CO)NH _Sample_label $sample_1 save_ save_HNHA_8 _Saveframe_category NMR_applied_experiment _Experiment_name HNHA _Sample_label $sample_1 save_ save_HCCH-TOCSY_9 _Saveframe_category NMR_applied_experiment _Experiment_name HCCH-TOCSY _Sample_label $sample_1 save_ ####################### # Sample conditions # ####################### save_cond_1 _Saveframe_category sample_conditions _Details . loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units pH 7.1 0.2 n/a temperature 298 0 K stop_ save_ #################### # NMR parameters # #################### ############################## # Assigned chemical shifts # ############################## ################################ # Chemical shift referencing # ################################ save_chemical_shift_reference _Saveframe_category chemical_shift_reference _Details . loop_ _Mol_common_name _Atom_type _Atom_isotope_number _Atom_group _Chem_shift_units _Chem_shift_value _Reference_method _Reference_type _External_reference_sample_geometry _External_reference_location _External_reference_axis _Indirect_shift_ratio DSS H 1 'methyl protons' ppm 0.0 internal direct . . . 1.000000000 DSS N 15 'methyl protons' ppm 0.0 . indirect . . . 0.101329118 DSS C 13 'methyl protons' ppm 0.0 . indirect . . . 0.251449530 stop_ save_ ################################### # Assigned chemical shift lists # ################################### ################################################################### # Chemical Shift Ambiguity Index Value Definitions # # # # The values other than 1 are used for those atoms with different # # chemical shifts that cannot be assigned to stereospecific atoms # # or to specific residues or chains. # # # # Index Value Definition # # # # 1 Unique (including isolated methyl protons, # # geminal atoms, and geminal methyl # # groups with identical chemical shifts) # # (e.g. ILE HD11, HD12, HD13 protons) # # 2 Ambiguity of geminal atoms or geminal methyl # # proton groups (e.g. ASP HB2 and HB3 # # protons, LEU CD1 and CD2 carbons, or # # LEU HD11, HD12, HD13 and HD21, HD22, # # HD23 methyl protons) # # 3 Aromatic atoms on opposite sides of # # symmetrical rings (e.g. TYR HE1 and HE2 # # protons) # # 4 Intraresidue ambiguities (e.g. LYS HG and # # HD protons or TRP HZ2 and HZ3 protons) # # 5 Interresidue ambiguities (LYS 12 vs. LYS 27) # # 6 Intermolecular ambiguities (e.g. ASP 31 CA # # in monomer 1 and ASP 31 CA in monomer 2 # # of an asymmetrical homodimer, duplex # # DNA assignments, or other assignments # # that may apply to atoms in one or more # # molecule in the molecular assembly) # # 9 Ambiguous, specific ambiguity not defined # # # ################################################################### save_shift_set_1 _Saveframe_category assigned_chemical_shifts _Details . loop_ _Sample_label $sample_1 stop_ _Sample_conditions_label $cond_1 _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name msrB _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 2 TYR C C 173.628 0.20 1 2 . 2 TYR CA C 59.125 0.20 1 3 . 2 TYR HA H 3.912 0.01 1 4 . 2 TYR CB C 39.619 0.20 1 5 . 3 LYS H H 7.884 0.01 1 6 . 3 LYS N N 126.495 0.10 1 7 . 3 LYS C C 173.168 0.20 1 8 . 3 LYS CA C 55.008 0.20 1 9 . 3 LYS HA H 4.223 0.01 1 10 . 3 LYS CB C 34.759 0.20 1 11 . 3 LYS HB2 H 1.481 0.01 1 12 . 3 LYS HB3 H 1.481 0.01 1 13 . 3 LYS CG C 18.681 0.20 1 14 . 3 LYS HG2 H 1.333 0.01 1 15 . 3 LYS HG3 H 1.333 0.01 1 16 . 3 LYS CD C 24.715 0.20 1 17 . 3 LYS HD2 H 1.156 0.01 1 18 . 3 LYS HD3 H 1.156 0.01 1 19 . 3 LYS CE C 42.580 0.20 1 20 . 3 LYS HE2 H 2.840 0.01 1 21 . 3 LYS HE3 H 2.840 0.01 1 22 . 4 LYS H H 8.344 0.01 1 23 . 4 LYS N N 126.104 0.10 1 24 . 4 LYS C C 174.062 0.20 1 25 . 4 LYS CA C 54.962 0.20 1 26 . 4 LYS HA H 4.263 0.01 1 27 . 4 LYS CB C 33.412 0.20 1 28 . 4 LYS HB2 H 1.697 0.01 1 29 . 4 LYS HB3 H 1.697 0.01 1 30 . 4 LYS HG2 H 1.502 0.01 1 31 . 4 LYS HG3 H 1.502 0.01 1 32 . 4 LYS HE2 H 2.909 0.01 1 33 . 4 LYS HE3 H 2.909 0.01 1 34 . 5 PRO C C 173.765 0.20 1 35 . 5 PRO CA C 63.055 0.20 1 36 . 5 PRO HA H 4.813 0.01 1 37 . 5 PRO CB C 32.729 0.20 1 38 . 5 PRO HB2 H 2.183 0.01 2 39 . 5 PRO HB3 H 2.084 0.01 2 40 . 5 PRO HG2 H 1.839 0.01 1 41 . 5 PRO HG3 H 1.839 0.01 1 42 . 5 PRO HD2 H 3.907 0.01 1 43 . 5 PRO HD3 H 3.907 0.01 1 44 . 6 SER H H 8.245 0.01 1 45 . 6 SER N N 114.520 0.10 1 46 . 6 SER C C 173.765 0.20 1 47 . 6 SER CA C 58.441 0.20 1 48 . 6 SER HA H 4.348 0.01 1 49 . 6 SER CB C 65.498 0.20 1 50 . 6 SER HB2 H 3.800 0.01 1 51 . 6 SER HB3 H 3.800 0.01 1 52 . 7 ASP H H 8.781 0.01 1 53 . 7 ASP N N 121.872 0.10 1 54 . 7 ASP C C 177.056 0.20 1 55 . 7 ASP CA C 58.915 0.20 1 56 . 7 ASP HA H 4.374 0.01 1 57 . 7 ASP CB C 42.305 0.20 1 58 . 7 ASP HB2 H 2.660 0.01 2 59 . 7 ASP HB3 H 2.490 0.01 2 60 . 8 ALA H H 8.319 0.01 1 61 . 8 ALA N N 118.162 0.10 1 62 . 8 ALA C C 180.180 0.20 1 63 . 8 ALA CA C 55.484 0.20 1 64 . 8 ALA HA H 3.889 0.01 1 65 . 8 ALA CB C 18.927 0.20 1 66 . 8 ALA HB H 1.328 0.01 1 67 . 9 GLU H H 7.570 0.01 1 68 . 9 GLU N N 118.471 0.10 1 69 . 9 GLU C C 179.403 0.20 1 70 . 9 GLU CA C 59.549 0.20 1 71 . 9 GLU HA H 3.998 0.01 1 72 . 9 GLU CB C 30.212 0.20 1 73 . 9 GLU HB2 H 2.303 0.01 2 74 . 9 GLU HB3 H 2.021 0.01 2 75 . 9 GLU HG2 H 2.159 0.01 1 76 . 9 GLU HG3 H 2.159 0.01 1 77 . 10 LEU H H 8.569 0.01 1 78 . 10 LEU N N 121.972 0.10 1 79 . 10 LEU C C 178.213 0.20 1 80 . 10 LEU CA C 58.603 0.20 1 81 . 10 LEU HA H 4.039 0.01 1 82 . 10 LEU CB C 42.002 0.20 1 83 . 10 LEU HB2 H 2.660 0.01 2 84 . 10 LEU HB3 H 2.540 0.01 2 85 . 10 LEU HD1 H 0.767 0.01 1 86 . 10 LEU HD2 H 0.767 0.01 1 87 . 11 LYS H H 8.397 0.01 1 88 . 11 LYS N N 117.795 0.10 1 89 . 11 LYS C C 177.535 0.20 1 90 . 11 LYS CA C 59.219 0.20 1 91 . 11 LYS HA H 3.753 0.01 1 92 . 11 LYS CB C 33.075 0.20 1 93 . 11 LYS HB2 H 1.600 0.01 1 94 . 11 LYS HB3 H 1.600 0.01 1 95 . 11 LYS HG2 H 1.549 0.01 1 96 . 11 LYS HG3 H 1.549 0.01 1 97 . 11 LYS HE2 H 2.652 0.01 1 98 . 11 LYS HE3 H 2.652 0.01 1 99 . 12 ARG H H 7.228 0.01 1 100 . 12 ARG N N 114.575 0.10 1 101 . 12 ARG C C 176.890 0.20 1 102 . 12 ARG CA C 57.822 0.20 1 103 . 12 ARG HA H 4.280 0.01 1 104 . 12 ARG CB C 31.896 0.20 1 105 . 12 ARG HB2 H 1.866 0.01 1 106 . 12 ARG HB3 H 1.866 0.01 1 107 . 12 ARG CG C 28.217 0.20 1 108 . 12 ARG HG2 H 1.639 0.01 1 109 . 12 ARG HG3 H 1.639 0.01 1 110 . 12 ARG CD C 44.028 0.20 1 111 . 12 ARG HD2 H 3.115 0.01 1 112 . 12 ARG HD3 H 3.115 0.01 1 113 . 13 THR H H 7.792 0.01 1 114 . 13 THR N N 111.011 0.10 1 115 . 13 THR C C 174.129 0.20 1 116 . 13 THR CA C 64.233 0.20 1 117 . 13 THR HA H 4.262 0.01 1 118 . 13 THR CB C 71.056 0.20 1 119 . 13 THR HB H 4.151 0.01 1 120 . 13 THR CG2 C 22.318 0.20 1 121 . 13 THR HG2 H 1.236 0.01 1 122 . 14 LEU H H 8.069 0.01 1 123 . 14 LEU N N 122.120 0.10 1 124 . 14 LEU C C 177.866 0.20 1 125 . 14 LEU CA C 54.542 0.20 1 126 . 14 LEU HA H 4.694 0.01 1 127 . 14 LEU CB C 43.184 0.20 1 128 . 14 LEU HB2 H 1.577 0.01 1 129 . 14 LEU HB3 H 1.577 0.01 1 130 . 14 LEU CG C 27.928 0.20 1 131 . 14 LEU HG H 1.573 0.01 1 132 . 14 LEU CD1 C 24.064 0.20 1 133 . 14 LEU HD1 H 0.768 0.01 1 134 . 14 LEU CD2 C 22.668 0.20 1 135 . 14 LEU HD2 H 0.768 0.01 1 136 . 15 THR H H 8.661 0.01 1 137 . 15 THR N N 112.228 0.10 1 138 . 15 THR C C 174.684 0.20 1 139 . 15 THR CA C 61.891 0.20 1 140 . 15 THR HA H 4.386 0.01 1 141 . 15 THR CB C 71.163 0.20 1 142 . 15 THR HB H 4.708 0.01 1 143 . 15 THR CG2 C 22.353 0.20 1 144 . 15 THR HG2 H 1.275 0.01 1 145 . 16 GLU H H 8.892 0.01 1 146 . 16 GLU N N 122.384 0.10 1 147 . 16 GLU C C 177.833 0.20 1 148 . 16 GLU CA C 60.892 0.20 1 149 . 16 GLU HA H 4.049 0.01 1 150 . 16 GLU CB C 29.454 0.20 1 151 . 16 GLU HB2 H 2.060 0.01 2 152 . 16 GLU HB3 H 1.895 0.01 2 153 . 16 GLU CG C 37.282 0.20 1 154 . 16 GLU HG2 H 2.237 0.01 2 155 . 16 GLU HG3 H 2.024 0.01 2 156 . 17 GLU H H 8.642 0.01 1 157 . 17 GLU N N 117.603 0.10 1 158 . 17 GLU C C 177.998 0.20 1 159 . 17 GLU CA C 60.951 0.20 1 160 . 17 GLU HA H 4.037 0.01 1 161 . 17 GLU CB C 30.128 0.20 1 162 . 17 GLU HB2 H 2.060 0.01 2 163 . 17 GLU HB3 H 1.895 0.01 2 164 . 17 GLU CG C 37.282 0.20 1 165 . 17 GLU HG2 H 2.237 0.01 2 166 . 17 GLU HG3 H 2.303 0.01 2 167 . 18 GLN H H 7.681 0.01 1 168 . 18 GLN N N 116.527 0.10 1 169 . 18 GLN C C 179.651 0.20 1 170 . 18 GLN CA C 59.388 0.20 1 171 . 18 GLN HA H 4.004 0.01 1 172 . 19 TYR H H 9.040 0.01 1 173 . 19 TYR N N 122.711 0.10 1 174 . 19 TYR CA C 63.155 0.20 1 175 . 19 TYR HA H 4.761 0.01 1 176 . 19 TYR HB2 H 2.016 0.01 1 177 . 21 VAL C C 176.890 0.20 1 178 . 21 VAL CA C 66.344 0.20 1 179 . 22 THR H H 7.663 0.01 1 180 . 22 THR N N 105.126 0.10 1 181 . 22 THR C C 177.419 0.20 1 182 . 22 THR CA C 66.106 0.20 1 183 . 22 THR HA H 4.590 0.01 1 184 . 22 THR CB C 77.401 0.20 1 185 . 22 THR HB H 4.074 0.01 1 186 . 22 THR CG2 C 22.658 0.20 1 187 . 22 THR HG2 H 1.410 0.01 1 188 . 23 GLN H H 8.559 0.01 1 189 . 23 GLN N N 116.402 0.10 1 190 . 23 GLN C C 176.560 0.20 1 191 . 23 GLN CA C 55.945 0.20 1 192 . 23 GLN HA H 4.220 0.01 1 193 . 23 GLN CB C 28.359 0.20 1 194 . 23 GLN HB2 H 1.297 0.01 2 195 . 23 GLN HB3 H 0.695 0.01 2 196 . 23 GLN HG2 H 1.799 0.01 1 197 . 23 GLN HG3 H 1.799 0.01 1 198 . 23 GLN NE2 N 110.090 0.10 1 199 . 23 GLN HE21 H 7.706 0.01 1 200 . 23 GLN HE22 H 7.006 0.01 1 201 . 24 ASN H H 6.867 0.01 1 202 . 24 ASN N N 114.989 0.10 1 203 . 24 ASN C C 174.460 0.20 1 204 . 24 ASN CA C 52.663 0.20 1 205 . 24 ASN HA H 5.128 0.01 1 206 . 24 ASN CB C 39.560 0.20 1 207 . 24 ASN HB2 H 3.093 0.01 2 208 . 24 ASN HB3 H 2.925 0.01 2 209 . 24 ASN ND2 N 110.639 0.10 1 210 . 24 ASN HD21 H 7.705 0.01 1 211 . 24 ASN HD22 H 6.999 0.01 1 212 . 25 SER H H 6.978 0.01 1 213 . 25 SER N N 109.473 0.10 1 214 . 25 SER C C 172.492 0.20 1 215 . 25 SER CA C 59.702 0.20 1 216 . 25 SER HA H 4.442 0.01 1 217 . 25 SER CB C 60.697 0.20 1 218 . 25 SER HB2 H 3.444 0.01 1 219 . 25 SER HB3 H 3.444 0.01 1 220 . 26 ALA H H 7.764 0.01 1 221 . 26 ALA N N 122.213 0.10 1 222 . 26 ALA C C 172.558 0.20 1 223 . 26 ALA CA C 52.536 0.20 1 224 . 26 ALA HA H 4.122 0.01 1 225 . 26 ALA CB C 19.487 0.20 1 226 . 26 ALA HB H 1.104 0.01 1 227 . 27 THR H H 7.588 0.01 1 228 . 27 THR N N 111.607 0.10 1 229 . 27 THR C C 174.782 0.20 1 230 . 27 THR CA C 61.421 0.20 1 231 . 27 THR HA H 4.760 0.01 1 232 . 27 THR CB C 72.000 0.20 1 233 . 27 THR HB H 3.709 0.01 1 234 . 27 THR HG2 H 1.282 0.01 1 235 . 31 PHE C C 175.187 0.20 1 236 . 31 PHE CA C 60.199 0.20 1 237 . 31 PHE CB C 36.219 0.20 1 238 . 32 SER H H 7.957 0.01 1 239 . 32 SER N N 114.006 0.10 1 240 . 32 SER C C 173.865 0.20 1 241 . 32 SER CA C 61.112 0.20 1 242 . 32 SER HA H 4.280 0.01 1 243 . 32 SER CB C 65.329 0.20 1 244 . 32 SER HB2 H 3.972 0.01 1 245 . 32 SER HB3 H 3.972 0.01 1 246 . 33 HIS H H 8.669 0.01 1 247 . 33 HIS N N 126.977 0.10 1 248 . 33 HIS C C 176.675 0.20 1 249 . 33 HIS CA C 59.075 0.20 1 250 . 33 HIS HA H 4.321 0.01 1 251 . 33 HIS CB C 34.591 0.20 1 252 . 33 HIS HB2 H 2.988 0.01 2 253 . 33 HIS HB3 H 2.802 0.01 2 254 . 34 GLU H H 8.394 0.01 1 255 . 34 GLU N N 130.418 0.10 1 256 . 34 GLU C C 178.191 0.20 1 257 . 34 GLU CA C 59.553 0.20 1 258 . 34 GLU HA H 4.228 0.01 1 259 . 34 GLU CB C 29.875 0.20 1 260 . 35 TYR C C 178.362 0.20 1 261 . 35 TYR CA C 56.402 0.20 1 262 . 35 TYR CB C 36.023 0.20 1 263 . 36 ASP H H 8.476 0.01 1 264 . 36 ASP N N 122.314 0.10 1 265 . 36 ASP C C 175.518 0.20 1 266 . 36 ASP CA C 59.234 0.20 1 267 . 36 ASP HA H 3.790 0.01 1 268 . 36 ASP CB C 42.254 0.20 1 269 . 36 ASP HB2 H 2.614 0.01 2 270 . 36 ASP HB3 H 2.521 0.01 2 271 . 37 HIS H H 7.015 0.01 1 272 . 37 HIS N N 110.691 0.10 1 273 . 37 HIS C C 172.129 0.20 1 274 . 37 HIS CA C 54.247 0.20 1 275 . 37 HIS HA H 4.859 0.01 1 276 . 37 HIS CB C 29.538 0.20 1 277 . 37 HIS HB2 H 3.334 0.01 2 278 . 37 HIS HB3 H 3.117 0.01 2 279 . 38 LEU H H 6.257 0.01 1 280 . 38 LEU N N 122.263 0.10 1 281 . 38 LEU C C 174.774 0.20 1 282 . 38 LEU CA C 55.392 0.20 1 283 . 38 LEU HA H 4.192 0.01 1 284 . 38 LEU CB C 44.612 0.20 1 285 . 38 LEU HB2 H 1.591 0.01 2 286 . 38 LEU HB3 H 1.276 0.01 2 287 . 38 LEU CG C 25.997 0.20 1 288 . 38 LEU HG H 1.276 0.01 1 289 . 38 LEU CD1 C 23.513 0.20 1 290 . 38 LEU HD1 H 0.665 0.01 1 291 . 38 LEU CD2 C 26.188 0.20 1 292 . 38 LEU HD2 H -0.163 0.01 1 293 . 39 PHE H H 8.966 0.01 1 294 . 39 PHE N N 125.512 0.10 1 295 . 39 PHE C C 174.146 0.20 1 296 . 39 PHE CA C 58.131 0.20 1 297 . 39 PHE HA H 4.488 0.01 1 298 . 39 PHE CB C 39.812 0.20 1 299 . 39 PHE HB2 H 3.022 0.01 2 300 . 39 PHE HB3 H 2.911 0.01 2 301 . 40 LYS H H 6.359 0.01 1 302 . 40 LYS N N 120.477 0.10 1 303 . 40 LYS C C 173.585 0.20 1 304 . 40 LYS CA C 54.536 0.20 1 305 . 40 LYS HA H 4.746 0.01 1 306 . 40 LYS CB C 35.091 0.20 1 307 . 40 LYS HB2 H 1.895 0.01 2 308 . 40 LYS HB3 H 1.686 0.01 2 309 . 40 LYS HG2 H 1.419 0.01 1 310 . 40 LYS HG3 H 1.419 0.01 1 311 . 40 LYS HD2 H 1.570 0.01 1 312 . 40 LYS HD3 H 1.570 0.01 1 313 . 40 LYS CE C 42.813 0.20 1 314 . 40 LYS HE2 H 2.911 0.01 1 315 . 40 LYS HE3 H 2.911 0.01 1 316 . 41 PRO C C 177.502 0.20 1 317 . 41 PRO CA C 62.883 0.20 1 318 . 41 PRO HA H 4.776 0.01 1 319 . 41 PRO CB C 32.640 0.20 1 320 . 41 PRO HB2 H 2.197 0.01 2 321 . 41 PRO HB3 H 1.807 0.01 2 322 . 41 PRO CG C 27.661 0.20 1 323 . 41 PRO HG2 H 1.870 0.01 1 324 . 41 PRO HG3 H 1.870 0.01 1 325 . 41 PRO CD C 51.019 0.20 1 326 . 41 PRO HD2 H 3.905 0.01 2 327 . 41 PRO HD3 H 3.573 0.01 2 328 . 42 GLY H H 9.169 0.01 1 329 . 42 GLY N N 112.863 0.10 1 330 . 42 GLY C C 169.665 0.20 1 331 . 42 GLY CA C 46.258 0.20 1 332 . 42 GLY HA2 H 3.129 0.01 2 333 . 42 GLY HA3 H 3.894 0.01 2 334 . 43 ILE H H 7.755 0.01 1 335 . 43 ILE N N 109.644 0.10 1 336 . 43 ILE C C 171.302 0.20 1 337 . 43 ILE CA C 59.215 0.20 1 338 . 43 ILE HA H 5.182 0.01 1 339 . 43 ILE CB C 43.602 0.20 1 340 . 43 ILE HB H 1.484 0.01 1 341 . 43 ILE CG1 C 17.821 0.20 1 342 . 43 ILE HG12 H 0.674 0.01 1 343 . 43 ILE HG13 H 0.674 0.01 1 344 . 43 ILE CD1 C 15.610 0.20 1 345 . 43 ILE HD1 H 0.078 0.01 1 346 . 44 TYR H H 9.234 0.01 1 347 . 44 TYR N N 118.626 0.10 1 348 . 44 TYR C C 175.187 0.20 1 349 . 44 TYR CA C 57.045 0.20 1 350 . 44 TYR HA H 4.598 0.01 1 351 . 44 TYR CB C 40.514 0.20 1 352 . 45 VAL H H 9.188 0.01 1 353 . 45 VAL N N 118.185 0.10 1 354 . 45 VAL C C 173.501 0.20 1 355 . 45 VAL CA C 57.832 0.20 1 356 . 45 VAL HA H 4.806 0.01 1 357 . 45 VAL CB C 33.726 0.20 1 358 . 45 VAL HB H 1.585 0.01 1 359 . 45 VAL CG1 C 19.297 0.20 1 360 . 45 VAL HG1 H 0.721 0.01 1 361 . 45 VAL CG2 C 21.424 0.20 1 362 . 45 VAL HG2 H 0.144 0.01 1 363 . 46 ASP H H 8.448 0.01 1 364 . 46 ASP N N 121.584 0.10 1 365 . 46 ASP C C 177.717 0.20 1 366 . 46 ASP CA C 55.481 0.20 1 367 . 46 ASP HA H 4.417 0.01 1 368 . 46 ASP CB C 44.444 0.20 1 369 . 46 ASP HB2 H 2.552 0.01 2 370 . 46 ASP HB3 H 2.396 0.01 2 371 . 47 VAL H H 8.559 0.01 1 372 . 47 VAL N N 129.468 0.10 1 373 . 47 VAL C C 173.947 0.20 1 374 . 47 VAL CA C 65.165 0.20 1 375 . 47 VAL HA H 3.681 0.01 1 376 . 47 VAL CB C 32.563 0.20 1 377 . 47 VAL HB H 1.802 0.01 1 378 . 47 VAL CG1 C 22.363 0.20 1 379 . 47 VAL HG1 H 0.925 0.01 1 380 . 47 VAL HG2 H 0.925 0.01 1 381 . 48 VAL H H 8.707 0.01 1 382 . 48 VAL N N 120.069 0.10 1 383 . 48 VAL C C 176.212 0.20 1 384 . 48 VAL CA C 66.123 0.20 1 385 . 48 VAL HA H 3.680 0.01 1 386 . 48 VAL CB C 31.922 0.20 1 387 . 48 VAL HB H 1.985 0.01 1 388 . 48 VAL CG1 C 23.756 0.20 1 389 . 48 VAL HG1 H 0.864 0.01 1 390 . 48 VAL HG2 H 0.864 0.01 1 391 . 49 SER H H 7.320 0.01 1 392 . 49 SER N N 109.004 0.10 1 393 . 49 SER C C 175.402 0.20 1 394 . 49 SER CA C 58.748 0.20 1 395 . 49 SER CB C 67.603 0.20 1 396 . 50 GLY H H 8.642 0.01 1 397 . 50 GLY N N 111.370 0.10 1 398 . 50 GLY C C 174.030 0.20 1 399 . 50 GLY CA C 45.474 0.20 1 400 . 50 GLY HA2 H 4.329 0.01 2 401 . 50 GLY HA3 H 3.531 0.01 2 402 . 51 GLU H H 8.180 0.01 1 403 . 51 GLU N N 124.802 0.10 1 404 . 51 GLU C C 173.412 0.20 1 405 . 51 GLU CA C 55.180 0.20 1 406 . 51 GLU CB C 31.307 0.20 1 407 . 52 PRO C C 174.228 0.20 1 408 . 52 PRO CA C 64.715 0.20 1 409 . 52 PRO CB C 32.819 0.20 1 410 . 53 LEU H H 8.245 0.01 1 411 . 53 LEU N N 121.557 0.10 1 412 . 53 LEU C C 174.344 0.20 1 413 . 53 LEU CA C 56.576 0.20 1 414 . 53 LEU HA H 3.891 0.01 1 415 . 53 LEU CB C 47.583 0.20 1 416 . 53 LEU HB2 H 1.655 0.01 1 417 . 53 LEU HB3 H 1.655 0.01 1 418 . 53 LEU HD1 H 0.624 0.01 1 419 . 53 LEU HD2 H 0.165 0.01 1 420 . 54 PHE H H 7.857 0.01 1 421 . 54 PHE N N 111.671 0.10 1 422 . 54 PHE C C 173.418 0.20 1 423 . 54 PHE CA C 57.378 0.20 1 424 . 54 PHE HA H 4.306 0.01 1 425 . 54 PHE CB C 45.795 0.20 1 426 . 54 PHE HB2 H 1.498 0.01 1 427 . 54 PHE HB3 H 1.498 0.01 1 428 . 55 SER H H 10.353 0.01 1 429 . 55 SER N N 116.741 0.10 1 430 . 55 SER C C 175.387 0.20 1 431 . 55 SER CA C 55.975 0.20 1 432 . 55 SER HA H 5.029 0.01 1 433 . 55 SER CB C 64.494 0.20 1 434 . 55 SER HB2 H 3.719 0.01 1 435 . 55 SER HB3 H 3.719 0.01 1 436 . 56 SER H H 9.179 0.01 1 437 . 56 SER N N 123.558 0.10 1 438 . 56 SER C C 176.725 0.20 1 439 . 56 SER CA C 62.648 0.20 1 440 . 56 SER HA H 4.179 0.01 1 441 . 56 SER CB C 64.985 0.20 1 442 . 56 SER HB2 H 3.664 0.01 1 443 . 56 SER HB3 H 3.664 0.01 1 444 . 57 ALA H H 8.763 0.01 1 445 . 57 ALA N N 125.489 0.10 1 446 . 57 ALA C C 177.221 0.20 1 447 . 57 ALA CA C 55.167 0.20 1 448 . 57 ALA HA H 4.301 0.01 1 449 . 57 ALA CB C 20.190 0.20 1 450 . 57 ALA HB H 1.518 0.01 1 451 . 58 ASP H H 7.653 0.01 1 452 . 58 ASP N N 114.134 0.10 1 453 . 58 ASP C C 173.617 0.20 1 454 . 58 ASP CA C 54.852 0.20 1 455 . 58 ASP HA H 4.408 0.01 1 456 . 58 ASP CB C 42.928 0.20 1 457 . 58 ASP HB2 H 2.917 0.01 2 458 . 58 ASP HB3 H 1.615 0.01 2 459 . 59 LYS H H 7.644 0.01 1 460 . 59 LYS N N 124.534 0.10 1 461 . 59 LYS C C 175.419 0.20 1 462 . 59 LYS CA C 56.263 0.20 1 463 . 59 LYS CB C 36.528 0.20 1 464 . 60 TYR H H 8.818 0.01 1 465 . 60 TYR N N 124.536 0.10 1 466 . 60 TYR C C 172.261 0.20 1 467 . 60 TYR CA C 56.421 0.20 1 468 . 60 TYR HA H 4.652 0.01 1 469 . 60 TYR CB C 41.833 0.20 1 470 . 60 TYR HB2 H 3.024 0.01 1 471 . 60 TYR HB3 H 3.024 0.01 1 472 . 61 ASP H H 8.938 0.01 1 473 . 61 ASP N N 122.263 0.10 1 474 . 61 ASP C C 174.791 0.20 1 475 . 61 ASP CA C 52.985 0.20 1 476 . 61 ASP CB C 41.665 0.20 1 477 . 62 SER H H 7.995 0.01 1 478 . 62 SER N N 121.457 0.10 1 479 . 62 SER C C 175.617 0.20 1 480 . 62 SER CA C 59.079 0.20 1 481 . 62 SER HA H 4.245 0.01 1 482 . 62 SER CB C 65.666 0.20 1 483 . 62 SER HB2 H 3.991 0.01 2 484 . 62 SER HB3 H 3.773 0.01 2 485 . 63 GLY H H 8.707 0.01 1 486 . 63 GLY N N 111.644 0.10 1 487 . 63 GLY C C 173.980 0.20 1 488 . 63 GLY CA C 46.424 0.20 1 489 . 63 GLY HA2 H 4.046 0.01 1 490 . 63 GLY HA3 H 4.046 0.01 1 491 . 64 CYS H H 7.394 0.01 1 492 . 64 CYS N N 113.425 0.10 1 493 . 64 CYS C C 172.906 0.20 1 494 . 64 CYS CA C 59.856 0.20 1 495 . 64 CYS HA H 4.369 0.01 1 496 . 64 CYS CB C 30.043 0.20 1 497 . 64 CYS HB2 H 2.982 0.01 1 498 . 64 CYS HB3 H 2.982 0.01 1 499 . 65 GLY H H 8.587 0.01 1 500 . 65 GLY N N 108.230 0.10 1 501 . 65 GLY C C 172.906 0.20 1 502 . 65 GLY CA C 43.131 0.20 1 503 . 66 TRP H H 7.056 0.01 1 504 . 66 TRP N N 119.325 0.10 1 505 . 66 TRP C C 172.903 0.20 1 506 . 66 TRP CA C 57.989 0.20 1 507 . 66 TRP HA H 4.779 0.01 1 508 . 66 TRP CB C 30.801 0.20 1 509 . 66 TRP HB2 H 3.240 0.01 1 510 . 66 TRP HB3 H 3.240 0.01 1 511 . 67 PRO C C 178.114 0.20 1 512 . 67 PRO CA C 59.326 0.20 1 513 . 67 PRO CB C 29.759 0.20 1 514 . 68 SER H H 12.330 0.01 1 515 . 68 SER N N 121.377 0.10 1 516 . 68 SER C C 170.856 0.20 1 517 . 68 SER CA C 56.614 0.20 1 518 . 68 SER CB C 67.357 0.20 1 519 . 69 PHE H H 8.790 0.01 1 520 . 69 PHE N N 119.287 0.10 1 521 . 69 PHE C C 175.997 0.20 1 522 . 69 PHE CA C 55.018 0.20 1 523 . 69 PHE HA H 5.994 0.01 1 524 . 69 PHE CB C 45.455 0.20 1 525 . 69 PHE HB2 H 2.992 0.01 2 526 . 69 PHE HB3 H 2.238 0.01 2 527 . 70 THR H H 9.558 0.01 1 528 . 70 THR N N 111.790 0.10 1 529 . 70 THR C C 173.964 0.20 1 530 . 70 THR CA C 63.291 0.20 1 531 . 70 THR HA H 5.103 0.01 1 532 . 70 THR CB C 69.624 0.20 1 533 . 70 THR HB H 4.526 0.01 1 534 . 70 THR CG2 C 21.930 0.20 1 535 . 70 THR HG2 H 1.122 0.01 1 536 . 71 ARG H H 7.172 0.01 1 537 . 71 ARG N N 112.543 0.10 1 538 . 71 ARG C C 172.073 0.20 1 539 . 71 ARG CA C 54.709 0.20 1 540 . 71 ARG HA H 4.662 0.01 1 541 . 71 ARG CB C 29.875 0.20 1 542 . 71 ARG HB2 H 1.657 0.01 1 543 . 71 ARG HB3 H 1.657 0.01 1 544 . 71 ARG CG C 25.588 0.20 1 545 . 71 ARG HG2 H 1.430 0.01 1 546 . 71 ARG HG3 H 1.430 0.01 1 547 . 71 ARG CD C 42.715 0.20 1 548 . 71 ARG HD2 H 2.899 0.01 1 549 . 71 ARG HD3 H 2.899 0.01 1 550 . 72 PRO C C 175.749 0.20 1 551 . 72 PRO CA C 61.554 0.20 1 552 . 72 PRO HA H 4.371 0.01 1 553 . 72 PRO CB C 32.103 0.20 1 554 . 72 PRO HB2 H 1.543 0.01 2 555 . 72 PRO HB3 H 1.327 0.01 2 556 . 72 PRO HG2 H 1.278 0.01 1 557 . 72 PRO HG3 H 1.278 0.01 1 558 . 72 PRO HD2 H 3.643 0.01 1 559 . 72 PRO HD3 H 3.643 0.01 1 560 . 73 ILE H H 8.153 0.01 1 561 . 73 ILE N N 121.552 0.10 1 562 . 73 ILE C C 173.088 0.20 1 563 . 73 ILE CA C 64.571 0.20 1 564 . 73 ILE HA H 4.082 0.01 1 565 . 73 ILE CB C 39.560 0.20 1 566 . 74 ASP H H 6.879 0.01 1 567 . 74 ASP N N 118.080 0.10 1 568 . 74 ASP C C 170.980 0.20 1 569 . 74 ASP CA C 53.795 0.20 1 570 . 74 ASP HA H 4.419 0.01 1 571 . 74 ASP CB C 45.539 0.20 1 572 . 74 ASP HB2 H 2.552 0.01 2 573 . 74 ASP HB3 H 2.379 0.01 2 574 . 75 ALA C C 177.965 0.20 1 575 . 75 ALA CA C 55.367 0.20 1 576 . 75 ALA HA H 3.927 0.01 1 577 . 75 ALA CB C 19.308 0.20 1 578 . 75 ALA HB H 1.323 0.01 1 579 . 76 LYS H H 8.375 0.01 1 580 . 76 LYS N N 113.642 0.10 1 581 . 76 LYS CA C 56.580 0.20 1 582 . 76 LYS HA H 4.202 0.01 1 583 . 76 LYS CB C 32.193 0.20 1 584 . 76 LYS HB2 H 1.515 0.01 1 585 . 76 LYS HB3 H 1.515 0.01 1 586 . 76 LYS CG C 24.889 0.20 1 587 . 76 LYS HG2 H 1.169 0.01 1 588 . 76 LYS HG3 H 1.169 0.01 1 589 . 76 LYS CD C 25.407 0.20 1 590 . 76 LYS HD2 H 1.333 0.01 1 591 . 76 LYS HD3 H 1.333 0.01 1 592 . 76 LYS CE C 42.434 0.20 1 593 . 76 LYS HE2 H 2.834 0.01 1 594 . 76 LYS HE3 H 2.834 0.01 1 595 . 77 SER H H 7.607 0.01 1 596 . 77 SER N N 114.348 0.10 1 597 . 77 SER C C 172.228 0.20 1 598 . 77 SER CA C 62.670 0.20 1 599 . 77 SER HA H 4.155 0.01 1 600 . 77 SER CB C 64.941 0.20 1 601 . 77 SER HB2 H 4.276 0.01 1 602 . 77 SER HB3 H 4.276 0.01 1 603 . 78 VAL H H 7.098 0.01 1 604 . 78 VAL N N 109.472 0.10 1 605 . 78 VAL C C 174.129 0.20 1 606 . 78 VAL CA C 58.625 0.20 1 607 . 78 VAL HA H 5.113 0.01 1 608 . 78 VAL CB C 35.682 0.20 1 609 . 78 VAL HB H 1.998 0.01 1 610 . 78 VAL CG1 C 19.554 0.20 1 611 . 78 VAL HG1 H 0.518 0.01 1 612 . 78 VAL CG2 C 22.635 0.20 1 613 . 78 VAL HG2 H 0.420 0.01 2 614 . 79 THR H H 9.373 0.01 1 615 . 79 THR N N 113.769 0.10 1 616 . 79 THR C C 172.244 0.20 1 617 . 79 THR CA C 60.003 0.20 1 618 . 79 THR HA H 4.486 0.01 1 619 . 79 THR CB C 71.115 0.20 1 620 . 79 THR HB H 4.040 0.01 1 621 . 79 THR CG2 C 22.341 0.20 1 622 . 79 THR HG2 H 1.048 0.01 1 623 . 80 GLU H H 8.060 0.01 1 624 . 80 GLU N N 120.750 0.10 1 625 . 80 GLU C C 175.948 0.20 1 626 . 80 GLU CA C 55.320 0.20 1 627 . 80 GLU HA H 5.171 0.01 1 628 . 80 GLU CB C 33.244 0.20 1 629 . 80 GLU HB2 H 1.586 0.01 1 630 . 80 GLU HB3 H 1.586 0.01 1 631 . 80 GLU HG2 H 2.082 0.01 2 632 . 80 GLU HG3 H 1.872 0.01 2 633 . 81 HIS H H 8.772 0.01 1 634 . 81 HIS N N 119.556 0.10 1 635 . 81 HIS C C 173.501 0.20 1 636 . 81 HIS CA C 55.161 0.20 1 637 . 81 HIS HA H 4.572 0.01 1 638 . 81 HIS CB C 34.086 0.20 1 639 . 81 HIS HB3 H 2.324 0.01 2 640 . 82 ASP H H 8.883 0.01 1 641 . 82 ASP N N 124.614 0.10 1 642 . 82 ASP C C 174.890 0.20 1 643 . 82 ASP CA C 56.520 0.20 1 644 . 82 ASP HA H 4.553 0.01 1 645 . 82 ASP CB C 42.423 0.20 1 646 . 82 ASP HB2 H 2.447 0.01 2 647 . 82 ASP HB3 H 2.095 0.01 2 648 . 83 ASP H H 8.587 0.01 1 649 . 83 ASP N N 122.879 0.10 1 650 . 83 ASP C C 175.832 0.20 1 651 . 83 ASP CA C 53.455 0.20 1 652 . 83 ASP HA H 4.832 0.01 1 653 . 83 ASP CB C 43.914 0.20 1 654 . 83 ASP HB2 H 2.885 0.01 2 655 . 83 ASP HB3 H 2.140 0.01 2 656 . 84 PHE H H 9.132 0.01 1 657 . 84 PHE N N 128.318 0.10 1 658 . 84 PHE CA C 57.446 0.20 1 659 . 84 PHE HA H 5.568 0.01 1 660 . 84 PHE CB C 39.056 0.20 1 661 . 84 PHE HB2 H 3.568 0.01 2 662 . 84 PHE HB3 H 2.668 0.01 2 663 . 86 TYR C C 173.554 0.20 1 664 . 86 TYR CA C 55.171 0.20 1 665 . 86 TYR CB C 38.052 0.20 1 666 . 87 ASN H H 7.385 0.01 1 667 . 87 ASN N N 116.477 0.10 1 668 . 87 ASN C C 172.767 0.20 1 669 . 87 ASN CA C 55.019 0.20 1 670 . 87 ASN HA H 4.598 0.01 1 671 . 87 ASN CB C 36.666 0.20 1 672 . 87 ASN HB2 H 2.317 0.01 2 673 . 87 ASN HB3 H 1.952 0.01 2 674 . 88 MET H H 8.208 0.01 1 675 . 88 MET N N 120.066 0.10 1 676 . 88 MET CA C 56.422 0.20 1 677 . 88 MET HA H 4.194 0.01 1 678 . 88 MET CB C 31.391 0.20 1 679 . 89 ARG C C 174.840 0.20 1 680 . 89 ARG CA C 56.351 0.20 1 681 . 89 ARG CB C 31.208 0.20 1 682 . 90 ARG H H 8.615 0.01 1 683 . 90 ARG N N 124.582 0.10 1 684 . 90 ARG C C 174.129 0.20 1 685 . 90 ARG CA C 54.550 0.20 1 686 . 91 THR H H 9.151 0.01 1 687 . 91 THR N N 119.994 0.10 1 688 . 91 THR C C 173.170 0.20 1 689 . 91 THR CA C 62.518 0.20 1 690 . 91 THR HA H 4.719 0.01 1 691 . 91 THR CB C 69.684 0.20 1 692 . 91 THR HB H 3.930 0.01 1 693 . 91 THR CG2 C 22.325 0.20 1 694 . 91 THR HG2 H 0.949 0.01 1 695 . 92 GLU H H 9.401 0.01 1 696 . 92 GLU N N 129.976 0.10 1 697 . 92 GLU C C 174.344 0.20 1 698 . 92 GLU CA C 55.326 0.20 1 699 . 92 GLU CB C 31.029 0.20 1 700 . 93 VAL H H 8.291 0.01 1 701 . 93 VAL N N 123.316 0.10 1 702 . 93 VAL C C 174.228 0.20 1 703 . 93 VAL CA C 60.183 0.20 1 704 . 93 VAL HA H 5.150 0.01 1 705 . 93 VAL CB C 34.340 0.20 1 706 . 93 VAL HB H 1.487 0.01 1 707 . 93 VAL CG1 C 23.083 0.20 1 708 . 93 VAL HG1 H 0.832 0.01 1 709 . 93 VAL CG2 C 21.614 0.20 1 710 . 93 VAL HG2 H 0.674 0.01 1 711 . 94 ARG H H 8.864 0.01 1 712 . 94 ARG N N 124.658 0.10 1 713 . 94 ARG C C 174.923 0.20 1 714 . 94 ARG CA C 54.396 0.20 1 715 . 94 ARG HA H 4.212 0.01 1 716 . 94 ARG CB C 34.928 0.20 1 717 . 94 ARG HB2 H 1.445 0.01 1 718 . 94 ARG HB3 H 1.445 0.01 1 719 . 94 ARG CG C 24.462 0.20 1 720 . 94 ARG HG2 H 1.169 0.01 1 721 . 94 ARG HG3 H 1.169 0.01 1 722 . 94 ARG CD C 42.549 0.20 1 723 . 94 ARG HD2 H 2.854 0.01 1 724 . 94 ARG HD3 H 2.854 0.01 1 725 . 95 SER H H 8.818 0.01 1 726 . 95 SER N N 114.864 0.10 1 727 . 95 SER C C 175.036 0.20 1 728 . 95 SER CA C 57.050 0.20 1 729 . 95 SER CB C 66.508 0.20 1 730 . 96 HIS H H 8.273 0.01 1 731 . 96 HIS N N 122.851 0.10 1 732 . 96 HIS C C 175.501 0.20 1 733 . 96 HIS CA C 60.604 0.20 1 734 . 96 HIS HA H 4.145 0.01 1 735 . 96 HIS CB C 30.549 0.20 1 736 . 96 HIS HB2 H 3.434 0.01 2 737 . 96 HIS HB3 H 2.932 0.01 2 738 . 97 ALA H H 10.547 0.01 1 739 . 97 ALA N N 124.048 0.10 1 740 . 97 ALA C C 178.907 0.20 1 741 . 97 ALA CA C 55.801 0.20 1 742 . 97 ALA HA H 3.807 0.01 1 743 . 97 ALA CB C 17.610 0.20 1 744 . 97 ALA HB H 1.119 0.01 1 745 . 98 ALA H H 8.495 0.01 1 746 . 98 ALA N N 116.087 0.10 1 747 . 98 ALA C C 176.130 0.20 1 748 . 98 ALA CA C 52.044 0.20 1 749 . 98 ALA HA H 4.117 0.01 1 750 . 98 ALA CB C 19.601 0.20 1 751 . 98 ALA HB H 1.096 0.01 1 752 . 99 ASP H H 7.191 0.01 1 753 . 99 ASP N N 119.384 0.10 1 754 . 99 ASP C C 175.766 0.20 1 755 . 99 ASP CA C 55.635 0.20 1 756 . 99 ASP HA H 4.268 0.01 1 757 . 99 ASP CB C 40.741 0.20 1 758 . 99 ASP HB2 H 2.642 0.01 2 759 . 99 ASP HB3 H 2.489 0.01 2 760 . 100 SER H H 8.097 0.01 1 761 . 100 SER N N 113.180 0.10 1 762 . 100 SER C C 175.387 0.20 1 763 . 100 SER CA C 57.995 0.20 1 764 . 100 SER HA H 3.762 0.01 1 765 . 100 SER CB C 63.565 0.20 1 766 . 100 SER HB2 H 3.894 0.01 1 767 . 100 SER HB3 H 3.894 0.01 1 768 . 101 HIS H H 9.197 0.01 1 769 . 101 HIS N N 123.484 0.10 1 770 . 101 HIS C C 172.393 0.20 1 771 . 101 HIS CA C 59.696 0.20 1 772 . 102 LEU H H 7.542 0.01 1 773 . 102 LEU N N 121.779 0.10 1 774 . 102 LEU C C 177.122 0.20 1 775 . 102 LEU CA C 54.657 0.20 1 776 . 102 LEU HA H 4.402 0.01 1 777 . 102 LEU CB C 43.686 0.20 1 778 . 102 LEU HB2 H 1.633 0.01 1 779 . 102 LEU HB3 H 1.633 0.01 1 780 . 102 LEU HG H 1.570 0.01 1 781 . 102 LEU HD1 H 0.880 0.01 1 782 . 102 LEU HD2 H 0.773 0.01 1 783 . 103 GLY H H 6.599 0.01 1 784 . 103 GLY N N 104.534 0.10 1 785 . 103 GLY C C 170.839 0.20 1 786 . 103 GLY CA C 46.734 0.20 1 787 . 103 GLY HA2 H 3.992 0.01 2 788 . 103 GLY HA3 H 4.112 0.01 2 789 . 104 HIS H H 8.670 0.01 1 790 . 104 HIS N N 122.777 0.10 1 791 . 104 HIS C C 171.418 0.20 1 792 . 104 HIS CA C 57.198 0.20 1 793 . 104 HIS CB C 37.370 0.20 1 794 . 105 VAL H H 8.143 0.01 1 795 . 105 VAL N N 118.163 0.10 1 796 . 105 VAL C C 172.740 0.20 1 797 . 105 VAL CA C 58.296 0.20 1 798 . 105 VAL HA H 5.192 0.01 1 799 . 105 VAL CB C 34.928 0.20 1 800 . 105 VAL HB H 1.996 0.01 1 801 . 105 VAL CG1 C 19.716 0.20 1 802 . 105 VAL HG1 H 0.549 0.01 1 803 . 105 VAL CG2 C 22.694 0.20 1 804 . 105 VAL HG2 H 0.422 0.01 1 805 . 106 PHE H H 9.058 0.01 1 806 . 106 PHE N N 127.197 0.10 1 807 . 106 PHE C C 174.409 0.20 1 808 . 106 PHE CA C 55.321 0.20 1 809 . 107 PRO C C 174.807 0.20 1 810 . 107 PRO CA C 63.957 0.20 1 811 . 107 PRO HA H 5.145 0.01 1 812 . 107 PRO CB C 29.240 0.20 1 813 . 107 PRO HB2 H 2.511 0.01 2 814 . 107 PRO HB3 H 1.832 0.01 2 815 . 107 PRO HG2 H 1.793 0.01 1 816 . 107 PRO HG3 H 1.793 0.01 1 817 . 107 PRO HD2 H 3.809 0.01 1 818 . 107 PRO HD3 H 3.809 0.01 1 819 . 108 ASP H H 7.810 0.01 1 820 . 108 ASP N N 121.753 0.10 1 821 . 108 ASP C C 176.940 0.20 1 822 . 108 ASP CA C 53.151 0.20 1 823 . 108 ASP HA H 4.768 0.01 1 824 . 108 ASP CB C 41.160 0.20 1 825 . 108 ASP HB2 H 2.984 0.01 2 826 . 108 ASP HB3 H 2.139 0.01 2 827 . 109 GLY H H 7.561 0.01 1 828 . 109 GLY N N 106.879 0.10 1 829 . 109 GLY C C 170.188 0.20 1 830 . 109 GLY CA C 44.978 0.20 1 831 . 109 GLY HA2 H 4.185 0.01 2 832 . 109 GLY HA3 H 3.271 0.01 2 833 . 110 PRO C C 178.213 0.20 1 834 . 110 PRO CA C 66.462 0.20 1 835 . 110 PRO HA H 4.623 0.01 1 836 . 110 PRO CB C 39.082 0.20 1 837 . 110 PRO HB2 H 1.857 0.01 2 838 . 110 PRO HB3 H 1.424 0.01 2 839 . 110 PRO HG2 H 1.424 0.01 1 840 . 110 PRO HG3 H 1.424 0.01 1 841 . 110 PRO HD2 H 3.896 0.01 1 842 . 110 PRO HD3 H 3.896 0.01 1 843 . 111 ARG H H 8.393 0.01 1 844 . 111 ARG N N 117.601 0.10 1 845 . 111 ARG C C 177.618 0.20 1 846 . 111 ARG CA C 59.082 0.20 1 847 . 111 ARG HA H 3.718 0.01 1 848 . 111 ARG CB C 30.313 0.20 1 849 . 111 ARG HB2 H 1.598 0.01 2 850 . 111 ARG HB3 H 1.165 0.01 2 851 . 111 ARG HG2 H 0.785 0.01 1 852 . 111 ARG HG3 H 0.785 0.01 1 853 . 111 ARG HD2 H 2.535 0.01 1 854 . 111 ARG HD3 H 2.535 0.01 1 855 . 112 ASP H H 8.920 0.01 1 856 . 112 ASP N N 115.991 0.10 1 857 . 112 ASP C C 175.650 0.20 1 858 . 112 ASP CA C 55.318 0.20 1 859 . 112 ASP HA H 3.822 0.01 1 860 . 112 ASP CB C 39.858 0.20 1 861 . 112 ASP HB2 H 2.728 0.01 2 862 . 112 ASP HB3 H 2.566 0.01 2 863 . 113 LYS H H 7.062 0.01 1 864 . 113 LYS N N 116.845 0.10 1 865 . 113 LYS C C 176.378 0.20 1 866 . 113 LYS CA C 54.700 0.20 1 867 . 113 LYS HA H 4.672 0.01 1 868 . 113 LYS CB C 34.170 0.20 1 869 . 113 LYS HB2 H 1.687 0.01 2 870 . 113 LYS HB3 H 1.657 0.01 2 871 . 113 LYS HG2 H 1.570 0.01 1 872 . 113 LYS HG3 H 1.570 0.01 1 873 . 113 LYS HD2 H 1.500 0.01 1 874 . 113 LYS HD3 H 1.500 0.01 1 875 . 113 LYS HE2 H 3.032 0.01 1 876 . 113 LYS HE3 H 3.032 0.01 1 877 . 114 GLY H H 7.635 0.01 1 878 . 114 GLY N N 108.202 0.10 1 879 . 114 GLY C C 174.576 0.20 1 880 . 114 GLY CA C 45.943 0.20 1 881 . 114 GLY HA2 H 4.459 0.01 2 882 . 114 GLY HA3 H 3.648 0.01 2 883 . 115 GLY H H 7.773 0.01 1 884 . 115 GLY N N 106.466 0.10 1 885 . 115 GLY C C 172.790 0.20 1 886 . 115 GLY CA C 45.955 0.20 1 887 . 115 GLY HA2 H 4.445 0.01 2 888 . 115 GLY HA3 H 3.461 0.01 2 889 . 116 LEU H H 8.698 0.01 1 890 . 116 LEU N N 122.264 0.10 1 891 . 116 LEU C C 173.716 0.20 1 892 . 116 LEU CA C 54.543 0.20 1 893 . 116 LEU HA H 4.980 0.01 1 894 . 116 LEU CB C 44.612 0.20 1 895 . 116 LEU HB2 H 1.998 0.01 2 896 . 116 LEU HB3 H 0.886 0.01 2 897 . 116 LEU CG C 26.732 0.20 1 898 . 116 LEU HG H 0.912 0.01 1 899 . 116 LEU CD1 C 22.882 0.20 1 900 . 116 LEU HD1 H 0.627 0.01 1 901 . 116 LEU HD2 H 0.627 0.01 1 902 . 117 ARG H H 8.337 0.01 1 903 . 117 ARG N N 120.947 0.10 1 904 . 117 ARG C C 174.708 0.20 1 905 . 117 ARG CA C 55.497 0.20 1 906 . 117 ARG HA H 4.226 0.01 1 907 . 117 ARG CB C 34.429 0.20 1 908 . 117 ARG HB2 H 2.203 0.01 2 909 . 117 ARG HB3 H 1.461 0.01 2 910 . 117 ARG CG C 24.729 0.20 1 911 . 117 ARG HG2 H 1.157 0.01 1 912 . 117 ARG HG3 H 1.157 0.01 1 913 . 117 ARG CD C 42.526 0.20 1 914 . 117 ARG HD2 H 2.842 0.01 1 915 . 117 ARG HD3 H 2.842 0.01 1 916 . 118 TYR H H 9.854 0.01 1 917 . 118 TYR N N 127.441 0.10 1 918 . 118 TYR C C 173.137 0.20 1 919 . 118 TYR CA C 59.544 0.20 1 920 . 118 TYR HA H 4.322 0.01 1 921 . 118 TYR CB C 37.960 0.20 1 922 . 118 TYR HB2 H 3.025 0.01 2 923 . 118 TYR HB3 H 2.754 0.01 2 924 . 119 CYS H H 9.317 0.01 1 925 . 119 CYS N N 128.979 0.10 1 926 . 119 CYS C C 171.062 0.20 1 927 . 119 CYS CA C 59.073 0.20 1 928 . 119 CYS HA H 4.735 0.01 1 929 . 119 CYS CB C 28.434 0.20 1 930 . 119 CYS HB2 H 3.175 0.01 2 931 . 119 CYS HB3 H 2.453 0.01 2 932 . 120 ILE H H 8.791 0.01 1 933 . 120 ILE N N 128.954 0.10 1 934 . 120 ILE C C 173.278 0.20 1 935 . 120 ILE CA C 57.243 0.20 1 936 . 120 ILE CB C 41.677 0.20 1 937 . 121 ASN H H 7.912 0.01 1 938 . 121 ASN N N 120.433 0.10 1 939 . 121 ASN CA C 54.872 0.20 1 940 . 121 ASN HA H 4.463 0.01 1 941 . 121 ASN CB C 39.981 0.20 1 942 . 121 ASN HB2 H 2.728 0.01 2 943 . 121 ASN HB3 H 2.569 0.01 2 944 . 121 ASN ND2 N 113.495 0.10 1 945 . 121 ASN HD21 H 7.892 0.01 1 946 . 121 ASN HD22 H 7.098 0.01 1 947 . 122 GLY C C 175.700 0.20 1 948 . 122 GLY CA C 47.672 0.20 1 949 . 122 GLY HA2 H 3.260 0.01 2 950 . 122 GLY HA3 H 2.598 0.01 2 951 . 123 ALA H H 9.327 0.01 1 952 . 123 ALA N N 119.654 0.10 1 953 . 123 ALA C C 176.659 0.20 1 954 . 123 ALA CA C 53.912 0.20 1 955 . 123 ALA HA H 4.141 0.01 1 956 . 123 ALA CB C 19.938 0.20 1 957 . 123 ALA HB H 1.392 0.01 1 958 . 124 SER H H 7.283 0.01 1 959 . 124 SER N N 108.882 0.10 1 960 . 124 SER C C 172.724 0.20 1 961 . 124 SER CA C 59.830 0.20 1 962 . 124 SER HA H 4.273 0.01 1 963 . 124 SER CB C 65.582 0.20 1 964 . 124 SER HB2 H 3.730 0.01 1 965 . 124 SER HB3 H 3.730 0.01 1 966 . 125 LEU H H 7.838 0.01 1 967 . 125 LEU N N 119.157 0.10 1 968 . 125 LEU C C 175.518 0.20 1 969 . 125 LEU CA C 53.757 0.20 1 970 . 125 LEU HA H 5.435 0.01 1 971 . 125 LEU CB C 48.318 0.20 1 972 . 125 LEU HB2 H 2.269 0.01 1 973 . 125 LEU HB3 H 2.269 0.01 1 974 . 125 LEU CG C 26.679 0.20 1 975 . 125 LEU HG H 1.961 0.01 1 976 . 125 LEU CD1 C 23.662 0.20 1 977 . 125 LEU HD1 H 0.678 0.01 1 978 . 125 LEU CD2 C 25.144 0.20 1 979 . 125 LEU HD2 H 0.582 0.01 1 980 . 126 LYS H H 8.911 0.01 1 981 . 126 LYS N N 119.538 0.10 1 982 . 126 LYS C C 174.427 0.20 1 983 . 126 LYS CA C 56.092 0.20 1 984 . 126 LYS HA H 4.843 0.01 1 985 . 126 LYS CB C 36.023 0.20 1 986 . 126 LYS HB2 H 1.548 0.01 1 987 . 126 LYS HB3 H 1.548 0.01 1 988 . 126 LYS CG C 25.427 0.20 1 989 . 126 LYS HG2 H 1.111 0.01 1 990 . 126 LYS HG3 H 1.111 0.01 1 991 . 126 LYS CD C 29.835 0.20 1 992 . 126 LYS HD2 H 1.468 0.01 1 993 . 126 LYS HD3 H 1.468 0.01 1 994 . 126 LYS CE C 42.688 0.20 1 995 . 126 LYS HE2 H 2.894 0.01 1 996 . 126 LYS HE3 H 2.894 0.01 1 997 . 127 PHE H H 8.217 0.01 1 998 . 127 PHE N N 125.829 0.10 1 999 . 127 PHE C C 173.286 0.20 1 1000 . 127 PHE CA C 56.733 0.20 1 1001 . 127 PHE HA H 4.378 0.01 1 1002 . 127 PHE CB C 40.402 0.20 1 1003 . 128 ILE H H 8.679 0.01 1 1004 . 128 ILE N N 130.180 0.10 1 1005 . 128 ILE C C 171.186 0.20 1 1006 . 128 ILE CA C 56.414 0.20 1 1007 . 128 ILE HA H 4.086 0.01 1 1008 . 128 ILE CB C 43.012 0.20 1 1009 . 128 ILE HB H 1.532 0.01 1 1010 . 128 ILE CG1 C 25.516 0.20 1 1011 . 128 ILE HG12 H 1.258 0.01 2 1012 . 128 ILE HG13 H 0.815 0.01 2 1013 . 128 ILE HG2 H 0.862 0.01 1 1014 . 128 ILE HD1 H 0.800 0.01 1 1015 . 129 PRO C C 177.171 0.20 1 1016 . 129 PRO CA C 62.615 0.20 1 1017 . 129 PRO HA H 4.439 0.01 1 1018 . 129 PRO CB C 34.856 0.20 1 1019 . 129 PRO HB2 H 2.338 0.01 2 1020 . 129 PRO HB3 H 1.925 0.01 2 1021 . 129 PRO HG2 H 1.696 0.01 1 1022 . 129 PRO HG3 H 1.696 0.01 1 1023 . 129 PRO HD2 H 3.184 0.01 1 1024 . 129 PRO HD3 H 3.184 0.01 1 1025 . 130 LEU H H 8.347 0.01 1 1026 . 130 LEU N N 126.041 0.10 1 1027 . 130 LEU C C 177.634 0.20 1 1028 . 130 LEU CA C 59.072 0.20 1 1029 . 130 LEU HA H 3.971 0.01 1 1030 . 130 LEU CB C 43.855 0.20 1 1031 . 130 LEU HB2 H 1.670 0.01 2 1032 . 130 LEU HB3 H 1.138 0.01 2 1033 . 130 LEU CG C 27.648 0.20 1 1034 . 130 LEU HG H 1.516 0.01 1 1035 . 130 LEU CD1 C 24.003 0.20 1 1036 . 130 LEU HD1 H 0.937 0.01 1 1037 . 130 LEU CD2 C 26.475 0.20 1 1038 . 130 LEU HD2 H 0.874 0.01 1 1039 . 131 GLU H H 9.872 0.01 1 1040 . 131 GLU N N 115.575 0.10 1 1041 . 131 GLU C C 175.964 0.20 1 1042 . 131 GLU CA C 59.542 0.20 1 1043 . 131 GLU HA H 4.111 0.01 1 1044 . 131 GLU CB C 29.035 0.20 1 1045 . 131 GLU HB2 H 2.305 0.01 2 1046 . 131 GLU HB3 H 2.020 0.01 2 1047 . 132 GLN H H 7.986 0.01 1 1048 . 132 GLN N N 117.306 0.10 1 1049 . 132 GLN C C 175.369 0.20 1 1050 . 132 GLN CA C 55.635 0.20 1 1051 . 132 GLN HA H 4.584 0.01 1 1052 . 132 GLN CB C 31.054 0.20 1 1053 . 132 GLN HB2 H 1.679 0.01 1 1054 . 132 GLN HB3 H 1.679 0.01 1 1055 . 132 GLN HG2 H 2.304 0.01 1 1056 . 132 GLN HG3 H 2.304 0.01 1 1057 . 132 GLN NE2 N 111.349 0.10 1 1058 . 132 GLN HE21 H 7.556 0.01 1 1059 . 132 GLN HE22 H 6.858 0.01 1 1060 . 133 MET H H 7.514 0.01 1 1061 . 133 MET N N 119.406 0.10 1 1062 . 133 MET C C 177.138 0.20 1 1063 . 133 MET CA C 62.205 0.20 1 1064 . 133 MET CB C 32.729 0.20 1 1065 . 134 ASP H H 9.021 0.01 1 1066 . 134 ASP N N 119.538 0.10 1 1067 . 134 ASP C C 179.370 0.20 1 1068 . 134 ASP CA C 56.092 0.20 1 1069 . 134 ASP HA H 4.243 0.01 1 1070 . 134 ASP CB C 40.486 0.20 1 1071 . 134 ASP HB2 H 2.696 0.01 2 1072 . 134 ASP HB3 H 2.548 0.01 2 1073 . 135 ALA H H 8.522 0.01 1 1074 . 135 ALA N N 124.412 0.10 1 1075 . 135 ALA C C 178.312 0.20 1 1076 . 135 ALA CA C 55.159 0.20 1 1077 . 135 ALA HA H 4.020 0.01 1 1078 . 135 ALA CB C 18.590 0.20 1 1079 . 135 ALA HB H 1.363 0.01 1 1080 . 136 ALA H H 7.764 0.01 1 1081 . 136 ALA N N 116.603 0.10 1 1082 . 136 ALA C C 175.832 0.20 1 1083 . 136 ALA CA C 52.664 0.20 1 1084 . 136 ALA HA H 4.305 0.01 1 1085 . 136 ALA CB C 20.213 0.20 1 1086 . 136 ALA HB H 1.511 0.01 1 1087 . 137 GLY H H 7.367 0.01 1 1088 . 137 GLY N N 103.537 0.10 1 1089 . 137 GLY C C 174.675 0.20 1 1090 . 137 GLY CA C 45.859 0.20 1 1091 . 137 GLY HA2 H 4.022 0.01 2 1092 . 137 GLY HA3 H 3.739 0.01 2 1093 . 138 TYR H H 8.354 0.01 1 1094 . 138 TYR N N 118.877 0.10 1 1095 . 138 TYR C C 175.981 0.20 1 1096 . 138 TYR CA C 57.076 0.20 1 1097 . 138 TYR HA H 4.809 0.01 1 1098 . 138 TYR CB C 40.823 0.20 1 1099 . 138 TYR HB2 H 3.304 0.01 2 1100 . 138 TYR HB3 H 2.102 0.01 2 1101 . 139 GLY H H 9.179 0.01 1 1102 . 139 GLY N N 111.692 0.10 1 1103 . 139 GLY C C 175.733 0.20 1 1104 . 139 GLY CA C 48.607 0.20 1 1105 . 139 GLY HA2 H 4.152 0.01 2 1106 . 139 GLY HA3 H 3.481 0.01 2 1107 . 140 ALA H H 8.580 0.01 1 1108 . 140 ALA N N 121.201 0.10 1 1109 . 140 ALA C C 178.163 0.20 1 1110 . 140 ALA CA C 54.532 0.20 1 1111 . 140 ALA HA H 3.962 0.01 1 1112 . 140 ALA CB C 18.843 0.20 1 1113 . 140 ALA HB H 1.360 0.01 1 1114 . 141 LEU H H 7.838 0.01 1 1115 . 141 LEU N N 116.087 0.10 1 1116 . 141 LEU C C 177.386 0.20 1 1117 . 141 LEU CA C 54.852 0.20 1 1118 . 141 LEU HA H 4.408 0.01 1 1119 . 141 LEU CB C 42.928 0.20 1 1120 . 141 LEU HB2 H 1.612 0.01 1 1121 . 141 LEU HB3 H 1.612 0.01 1 1122 . 141 LEU CG C 28.026 0.20 1 1123 . 141 LEU HG H 1.564 0.01 1 1124 . 141 LEU CD1 C 27.102 0.20 1 1125 . 141 LEU HD1 H 0.879 0.01 1 1126 . 141 LEU CD2 C 24.039 0.20 1 1127 . 141 LEU HD2 H 0.761 0.01 1 1128 . 142 LYS H H 7.524 0.01 1 1129 . 142 LYS N N 121.090 0.10 1 1130 . 142 LYS C C 178.099 0.20 1 1131 . 142 LYS CA C 62.212 0.20 1 1132 . 142 LYS HA H 3.564 0.01 1 1133 . 142 LYS CB C 31.541 0.20 1 1134 . 142 LYS HB2 H 1.736 0.01 1 1135 . 142 LYS HG2 H 0.868 0.01 1 1136 . 142 LYS HG3 H 0.868 0.01 1 1137 . 142 LYS HD2 H 1.510 0.01 1 1138 . 142 LYS HD3 H 1.510 0.01 1 1139 . 142 LYS CE C 40.936 0.20 1 1140 . 142 LYS HE2 H 2.988 0.01 1 1141 . 142 LYS HE3 H 2.988 0.01 1 1142 . 143 SER C C 174.807 0.20 1 1143 . 143 SER CA C 60.736 0.20 1 1144 . 143 SER HA H 4.273 0.01 1 1145 . 143 SER CB C 62.973 0.20 1 1146 . 143 SER HB2 H 3.946 0.01 1 1147 . 143 SER HB3 H 3.946 0.01 1 1148 . 144 LYS H H 7.644 0.01 1 1149 . 144 LYS N N 118.266 0.10 1 1150 . 144 LYS C C 176.874 0.20 1 1151 . 144 LYS CA C 55.957 0.20 1 1152 . 144 LYS HA H 4.344 0.01 1 1153 . 144 LYS CB C 32.738 0.20 1 1154 . 144 LYS HB2 H 1.922 0.01 2 1155 . 144 LYS HB3 H 1.772 0.01 2 1156 . 144 LYS CG C 25.472 0.20 1 1157 . 144 LYS HG2 H 1.378 0.01 1 1158 . 144 LYS HG3 H 1.378 0.01 1 1159 . 144 LYS CD C 28.091 0.20 1 1160 . 144 LYS HD2 H 1.626 0.01 1 1161 . 144 LYS HD3 H 1.626 0.01 1 1162 . 144 LYS CE C 42.860 0.20 1 1163 . 144 LYS HE2 H 2.926 0.01 1 1164 . 144 LYS HE3 H 2.926 0.01 1 1165 . 145 VAL H H 7.829 0.01 1 1166 . 145 VAL N N 123.144 0.10 1 1167 . 145 VAL C C 173.137 0.20 1 1168 . 145 VAL CA C 64.397 0.20 1 1169 . 145 VAL HA H 3.805 0.01 1 1170 . 145 VAL CB C 33.075 0.20 1 1171 . 145 VAL HB H 2.255 0.01 1 1172 . 145 VAL CG1 C 23.708 0.20 1 1173 . 145 VAL HG1 H 0.983 0.01 1 1174 . 145 VAL CG2 C 22.138 0.20 1 1175 . 145 VAL HG2 H 0.832 0.01 1 1176 . 146 LYS H H 7.002 0.01 1 1177 . 146 LYS N N 126.214 0.10 1 1178 . 146 LYS C C 179.387 0.20 1 1179 . 146 LYS CA C 58.143 0.20 1 1180 . 146 LYS HA H 4.119 0.01 1 1181 . 146 LYS CG C 25.137 0.20 1 1182 . 146 LYS HG2 H 1.315 0.01 1 1183 . 146 LYS HG3 H 1.315 0.01 1 1184 . 146 LYS CB C 35.265 0.20 1 1185 . 146 LYS HB2 H 1.801 0.01 2 1186 . 146 LYS HB3 H 1.645 0.01 2 1187 . 146 LYS CD C 29.819 0.20 1 1188 . 146 LYS HD2 H 1.630 0.01 1 1189 . 146 LYS HD3 H 1.630 0.01 1 1190 . 146 LYS CE C 42.718 0.20 1 1191 . 146 LYS HE2 H 2.931 0.01 1 1192 . 146 LYS HE3 H 2.931 0.01 1 stop_ save_