data_6128 ####################### # Entry information # ####################### save_entry_information _Saveframe_category entry_information _Entry_title ; Structure of At3g01050.1, a ubiquitin-fold protein from Arabidopsis thaliana ; _BMRB_accession_number 6128 _BMRB_flat_file_name bmr6128.str _Entry_type original _Submission_date 2004-03-03 _Accession_date 2004-03-03 _Entry_origination author _NMR_STAR_version 2.1.1 _Experimental_method NMR _Details . loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Lytle B. L. . 2 Peterson F. C. . 3 Volkman B. F. . 4 Markley J. L. . stop_ loop_ _Saveframe_category_type _Saveframe_category_type_count assigned_chemical_shifts 1 stop_ loop_ _Data_type _Data_type_count "1H chemical shifts" 551 "13C chemical shifts" 502 "15N chemical shifts" 116 stop_ loop_ _Revision_date _Revision_keyword _Revision_author _Revision_detail 2009-07-09 update BMRB 'added time domain data' 2007-01-04 update author 'update the entry citation' 2004-05-15 original author 'original release' stop_ save_ ############################# # Citation for this entry # ############################# save_entry_citation _Saveframe_category entry_citation _Citation_full . _Citation_title 'Cell-free protein production and labeling protocol for NMR-based structural proteomics' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 15782178 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Vinarov D. A. . 2 Lytle B. L. . 3 Peterson F. C. . 4 Tyler E. . . 5 Volkman B. F. . 6 Markley J. L. . stop_ _Journal_abbreviation 'Nat. Methods' _Journal_volume 1 _Journal_issue 2 _Journal_CSD . _Book_chapter_title . _Book_volume . _Book_series . _Book_ISBN . _Conference_state_province . _Conference_abstract_number . _Page_first 149 _Page_last 153 _Year 2004 _Details . loop_ _Keyword ubiquitin-like cell-free 'wheat germ' 'Center for Eukaryotic Structural Genomics' stop_ save_ ####################################### # Cited references within the entry # ####################################### save_ref_1 _Saveframe_category citation _Citation_full ; Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995 Nov;6(3):277-93. ; _Citation_title 'NMRPipe: a multidimensional spectral processing system based on UNIX pipes.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 8520220 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Delaglio F . . 2 Grzesiek S . . 3 Vuister G W. . 4 Zhu G . . 5 Pfeifer J . . 6 Bax A . . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of biomolecular NMR' _Journal_volume 6 _Journal_issue 3 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 277 _Page_last 293 _Year 1995 _Details ; The NMRPipe system is a UNIX software environment of processing, graphics, and analysis tools designed to meet current routine and research-oriented multidimensional processing requirements, and to anticipate and accommodate future demands and developments. The system is based on UNIX pipes, which allow programs running simultaneously to exchange streams of data under user control. In an NMRPipe processing scheme, a stream of spectral data flows through a pipeline of processing programs, each of which performs one component of the overall scheme, such as Fourier transformation or linear prediction. Complete multidimensional processing schemes are constructed as simple UNIX shell scripts. The processing modules themselves maintain and exploit accurate records of data sizes, detection modes, and calibration information in all dimensions, so that schemes can be constructed without the need to explicitly define or anticipate data sizes or storage details of real and imaginary channels during processing. The asynchronous pipeline scheme provides other substantial advantages, including high flexibility, favorable processing speeds, choice of both all-in-memory and disk-bound processing, easy adaptation to different data formats, simpler software development and maintenance, and the ability to distribute processing tasks on multi-CPU computers and computer networks. ; save_ save_ref_2 _Saveframe_category citation _Citation_full ; Bartels, C., Xia, T.-H., Billeter, M., Guntert, P. and Wuthrich, K. (1995) J. Biomol. NMR, 6, 1-10. ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref_3 _Saveframe_category citation _Citation_full ; Bartels, C., Guntert, P., Billeter, M. and Wuthrich, K. (1997) GARANT-A general algorithm for resonance assignment of multidimensional nuclear magnetic resonance spectra. J. Comp. Chem. 18, 139-149. ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref_4 _Saveframe_category citation _Citation_full ; Cornilescu G, Delaglio F, Bax A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR. 1999 Mar;13(3):289-302. ; _Citation_title 'Protein backbone angle restraints from searching a database for chemical shift and sequence homology.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 10212987 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Cornilescu G . . 2 Delaglio F . . 3 Bax A . . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of biomolecular NMR' _Journal_volume 13 _Journal_issue 3 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 289 _Page_last 302 _Year 1999 _Details ; Chemical shifts of backbone atoms in proteins are exquisitely sensitive to local conformation, and homologous proteins show quite similar patterns of secondary chemical shifts. The inverse of this relation is used to search a database for triplets of adjacent residues with secondary chemical shifts and sequence similarity which provide the best match to the query triplet of interest. The database contains 13C alpha, 13C beta, 13C', 1H alpha and 15N chemical shifts for 20 proteins for which a high resolution X-ray structure is available. The computer program TALOS was developed to search this database for strings of residues with chemical shift and residue type homology. The relative importance of the weighting factors attached to the secondary chemical shifts of the five types of resonances relative to that of sequence similarity was optimized empirically. TALOS yields the 10 triplets which have the closest similarity in secondary chemical shift and amino acid sequence to those of the query sequence. If the central residues in these 10 triplets exhibit similar phi and psi backbone angles, their averages can reliably be used as angular restraints for the protein whose structure is being studied. Tests carried out for proteins of known structure indicate that the root-mean-square difference (rmsd) between the output of TALOS and the X-ray derived backbone angles is about 15 degrees. Approximately 3% of the predictions made by TALOS are found to be in error. ; save_ save_ref_5 _Saveframe_category citation _Citation_full ; Herrmann T, Guntert P, Wuthrich K. Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol. 2002 May 24;319(1):209-27. ; _Citation_title 'Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 12051947 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Herrmann Torsten . . 2 Guntert Peter . . 3 Wuthrich Kurt . . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_name_full 'Journal of molecular biology' _Journal_volume 319 _Journal_issue 1 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 209 _Page_last 227 _Year 2002 _Details ; Combined automated NOE assignment and structure determination module (CANDID) is a new software for efficient NMR structure determination of proteins by automated assignment of the NOESY spectra. CANDID uses an iterative approach with multiple cycles of NOE cross-peak assignment and protein structure calculation using the fast DYANA torsion angle dynamics algorithm, so that the result from each CANDID cycle consists of exhaustive, possibly ambiguous NOE cross-peak assignments in all available spectra and a three-dimensional protein structure represented by a bundle of conformers. The input for the first CANDID cycle consists of the amino acid sequence, the chemical shift list from the sequence-specific resonance assignment, and listings of the cross-peak positions and volumes in one or several two, three or four-dimensional NOESY spectra. The input for the second and subsequent CANDID cycles contains the three-dimensional protein structure from the previous cycle, in addition to the complete input used for the first cycle. CANDID includes two new elements that make it robust with respect to the presence of artifacts in the input data, i.e. network-anchoring and constraint-combination, which have a key role in de novo protein structure determinations for the successful generation of the correct polypeptide fold by the first CANDID cycle. Network-anchoring makes use of the fact that any network of correct NOE cross-peak assignments forms a self-consistent set; the initial, chemical shift-based assignments for each individual NOE cross-peak are therefore weighted by the extent to which they can be embedded into the network formed by all other NOE cross-peak assignments. Constraint-combination reduces the deleterious impact of artifact NOE upper distance constraints in the input for a protein structure calculation by combining the assignments for two or several peaks into a single upper limit distance constraint, which lowers the probability that the presence of an artifact peak will influence the outcome of the structure calculation. CANDID test calculations were performed with NMR data sets of four proteins for which high-quality structures had previously been solved by interactive protocols, and they yielded comparable results to these reference structure determinations with regard to both the residual constraint violations, and the precision and accuracy of the atomic coordinates. The CANDID approach has further been validated by de novo NMR structure determinations of four additional proteins. The experience gained in these calculations shows that once nearly complete sequence-specific resonance assignments are available, the automated CANDID approach results in greatly enhanced efficiency of the NOESY spectral analysis. The fact that the correct fold is obtained in cycle 1 of a de novo structure calculation is the single most important advance achieved with CANDID, when compared with previously proposed automated NOESY assignment methods that do not use network-anchoring and constraint-combination. ; save_ save_ref_6 _Saveframe_category citation _Citation_full ; Schwieters CD, Kuszewski JJ, Tjandra N, Marius Clore G. The Xplor-NIH NMR molecular structure determination package. J Magn Reson. 2003 Jan;160(1):65-73. ; _Citation_title 'The Xplor-NIH NMR molecular structure determination package.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 12565051 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Schwieters 'Charles D' D. . 2 Kuszewski 'John J' J. . 3 Tjandra Nico . . 4 Clore 'G Marius' M. . stop_ _Journal_abbreviation 'J. Magn. Reson.' _Journal_name_full 'Journal of magnetic resonance (San Diego, Calif. : 1997)' _Journal_volume 160 _Journal_issue 1 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 65 _Page_last 73 _Year 2003 _Details ; We announce the availability of the Xplor-NIH software package for NMR biomolecular structure determination. This package consists of the pre-existing XPLOR program, along with many NMR-specific extensions developed at the NIH. In addition to many features which have been developed over the last 20 years, the Xplor-NIH package contains an interface with a new programmatic framework written in C++. This interface currently supports the general purpose scripting languages Python and TCL, enabling rapid development of new tools, such as new potential energy terms and new optimization methods. Support for these scripting languages also facilitates interaction with existing external programs for structure analysis, structure manipulation, visualization, and spectral analysis. ; save_ ################################## # Molecular system description # ################################## save_system_At3g01050 _Saveframe_category molecular_system _Mol_system_name At3g01050.1 _Abbreviation_common At3g01050.1 _Enzyme_commission_number . loop_ _Mol_system_component_name _Mol_label At3g01050.1 $At3g01050 stop_ _System_molecular_weight . _System_physical_state native _System_oligomer_state monomer _System_paramagnetic no _System_thiol_state 'not present' _Database_query_date . _Details . save_ ######################## # Monomeric polymers # ######################## save_At3g01050 _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class protein _Name_common At3g01050.1 _Abbreviation_common At3g01050.1 _Molecular_mass 12821 _Mol_thiol_state 'not present' _Details '10 residue N-terminal tag' ############################## # Polymer residue sequence # ############################## _Residue_count 126 _Mol_residue_sequence ; MGHHHHHHLEAEVHNQLEIK FRLTDGSDIGPKAFPDATTV SALKETVISEWPREKENGPK TVKEVKLISAGKVLENSKTV KDYRSPVSNLAGAVTTMHVI IQAPVTEKEKKPKGDPKMNK CVCSVM ; loop_ _Residue_seq_code _Residue_author_seq_code _Residue_label 1 -9 MET 2 -8 GLY 3 -7 HIS 4 -6 HIS 5 -5 HIS 6 -4 HIS 7 -3 HIS 8 -2 HIS 9 -1 LEU 10 1 GLU 11 2 ALA 12 3 GLU 13 4 VAL 14 5 HIS 15 6 ASN 16 7 GLN 17 8 LEU 18 9 GLU 19 10 ILE 20 11 LYS 21 12 PHE 22 13 ARG 23 14 LEU 24 15 THR 25 16 ASP 26 17 GLY 27 18 SER 28 19 ASP 29 20 ILE 30 21 GLY 31 22 PRO 32 23 LYS 33 24 ALA 34 25 PHE 35 26 PRO 36 27 ASP 37 28 ALA 38 29 THR 39 30 THR 40 31 VAL 41 32 SER 42 33 ALA 43 34 LEU 44 35 LYS 45 36 GLU 46 37 THR 47 38 VAL 48 39 ILE 49 40 SER 50 41 GLU 51 42 TRP 52 43 PRO 53 44 ARG 54 45 GLU 55 46 LYS 56 47 GLU 57 48 ASN 58 49 GLY 59 50 PRO 60 51 LYS 61 52 THR 62 53 VAL 63 54 LYS 64 55 GLU 65 56 VAL 66 57 LYS 67 58 LEU 68 59 ILE 69 60 SER 70 61 ALA 71 62 GLY 72 63 LYS 73 64 VAL 74 65 LEU 75 66 GLU 76 67 ASN 77 68 SER 78 69 LYS 79 70 THR 80 71 VAL 81 72 LYS 82 73 ASP 83 74 TYR 84 75 ARG 85 76 SER 86 77 PRO 87 78 VAL 88 79 SER 89 80 ASN 90 81 LEU 91 82 ALA 92 83 GLY 93 84 ALA 94 85 VAL 95 86 THR 96 87 THR 97 88 MET 98 89 HIS 99 90 VAL 100 91 ILE 101 92 ILE 102 93 GLN 103 94 ALA 104 95 PRO 105 96 VAL 106 97 THR 107 98 GLU 108 99 LYS 109 100 GLU 110 101 LYS 111 102 LYS 112 103 PRO 113 104 LYS 114 105 GLY 115 106 ASP 116 107 PRO 117 108 LYS 118 109 MET 119 110 ASN 120 111 LYS 121 112 CYS 122 113 VAL 123 114 CYS 124 115 SER 125 116 VAL 126 117 MET stop_ _Sequence_homology_query_date . _Sequence_homology_query_revised_last_date 2014-11-09 loop_ _Database_name _Database_accession_code _Database_entry_mol_name _Sequence_query_to_submitted_percentage _Sequence_subject_length _Sequence_identity _Sequence_positive _Sequence_homology_expectation_value PDB 1SE9 "Structure Of At3g01050, A Ubiquitin-Fold Protein From Arabidopsis Thaliana" 100.00 126 100.00 100.00 5.48e-86 GB AAF26169 "unknown protein [Arabidopsis thaliana]" 92.06 117 100.00 100.00 2.48e-77 GB AAR20718 "At3g01050 [Arabidopsis thaliana]" 92.06 117 100.00 100.00 2.48e-77 GB AAS92335 "At3g01050 [Arabidopsis thaliana]" 92.06 117 100.00 100.00 2.48e-77 GB AEE73600 "membrane-anchored ubiquitin-fold protein 1 precursor [Arabidopsis thaliana]" 92.06 117 100.00 100.00 2.48e-77 REF NP_186754 "membrane-anchored ubiquitin-fold protein 1 precursor [Arabidopsis thaliana]" 92.06 117 100.00 100.00 2.48e-77 SP Q9MAB9 "RecName: Full=Membrane-anchored ubiquitin-fold protein 1; Short=AtMUB1; Short=Membrane-anchored ub-fold protein 1; Flags: Precu" 92.06 117 100.00 100.00 2.48e-77 stop_ save_ #################### # Natural source # #################### save_natural_source _Saveframe_category natural_source loop_ _Mol_label _Organism_name_common _NCBI_taxonomy_ID _Superkingdom _Kingdom _Genus _Species $At3g01050 'thale cress' 3702 Eukaryota Viridiplantae Arabidopsis thaliana stop_ save_ ######################### # Experimental source # ######################### save_experimental_source _Saveframe_category experimental_source loop_ _Mol_label _Production_method _Host_organism_name_common _Genus _Species _Strain _Vector_name _Details $At3g01050 'cell free synthesis' . . . . . 'Wheat germ cell-free expression system using peU-(N)-His6 vector.' stop_ save_ ##################################### # Sample contents and methodology # ##################################### ######################## # Sample description # ######################## save_sample_1 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $At3g01050 0.5 mM '[U-13C; U-15N]' KCl 50 mM . 'phosphate buffer' 10 mM . DTT 1 mM . H20 90 % . D20 10 % . stop_ save_ ############################ # Computer software used # ############################ save_XWINNMR _Saveframe_category software _Name XWINNMR _Version 3.1 loop_ _Task collection stop_ _Details 'Bruker Biospin' save_ save_NMRPipe _Saveframe_category software _Name NMRPipe _Version 2.1 loop_ _Task processing stop_ _Details . _Citation_label $ref_1 save_ save_XEASY _Saveframe_category software _Name XEASY _Version 1.3.1 loop_ _Task analysis stop_ _Details . _Citation_label $ref_2 save_ save_SPSCAN _Saveframe_category software _Name SPSCAN _Version 1.1.0 loop_ _Task 'peak picking' stop_ _Details 'Ralf W. Glaser' save_ save_GARANT _Saveframe_category software _Name GARANT _Version 2.1 loop_ _Task 'automated backbone assignments' stop_ _Details . _Citation_label $ref_3 save_ save_TALOS _Saveframe_category software _Name TALOS _Version . loop_ _Task 'generation of torsion angle restraints' stop_ _Details . _Citation_label $ref_4 save_ save_CYANA _Saveframe_category software _Name CYANA _Version 1.0.6 loop_ _Task 'refinement (torsion angle dynamics)' stop_ _Details 'CANDID module used for automated NOE crosspeak assignment' _Citation_label $ref_5 save_ save_XPLOR-NIH _Saveframe_category software _Name XPLOR-NIH _Version 2.0.6 loop_ _Task 'refinement (cartesian MD in explicit solvent)' stop_ _Details . _Citation_label $ref_6 save_ ######################### # Experimental detail # ######################### ################################## # NMR Spectrometer definitions # ################################## save_NMR_spectrometer _Saveframe_category NMR_spectrometer _Manufacturer Bruker _Model DRX _Field_strength 600 _Details . save_ ############################# # NMR applied experiments # ############################# save_1H-15N_HSQC_1 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N HSQC' _Sample_label $sample_1 save_ save_HNCA_2 _Saveframe_category NMR_applied_experiment _Experiment_name HNCA _Sample_label $sample_1 save_ save_HNCO_3 _Saveframe_category NMR_applied_experiment _Experiment_name HNCO _Sample_label $sample_1 save_ save_HN(CO)CA_4 _Saveframe_category NMR_applied_experiment _Experiment_name HN(CO)CA _Sample_label $sample_1 save_ save_HNCACB_5 _Saveframe_category NMR_applied_experiment _Experiment_name HNCACB _Sample_label $sample_1 save_ save_HN(CA)CO_6 _Saveframe_category NMR_applied_experiment _Experiment_name HN(CA)CO _Sample_label $sample_1 save_ save_C(CO)NH_7 _Saveframe_category NMR_applied_experiment _Experiment_name C(CO)NH _Sample_label $sample_1 save_ save_HCCH-TOCSY_8 _Saveframe_category NMR_applied_experiment _Experiment_name HCCH-TOCSY _Sample_label $sample_1 save_ save_3D_15N-NOESY_9 _Saveframe_category NMR_applied_experiment _Experiment_name '3D 15N-NOESY' _Sample_label $sample_1 save_ save_3D_13C-NOESY_10 _Saveframe_category NMR_applied_experiment _Experiment_name '3D 13C-NOESY' _Sample_label $sample_1 save_ save_3D_13C-NOESY-aromatic_11 _Saveframe_category NMR_applied_experiment _Experiment_name '3D 13C-NOESY-aromatic' _Sample_label $sample_1 save_ save_diffusion_12 _Saveframe_category NMR_applied_experiment _Experiment_name diffusion _Sample_label $sample_1 save_ save_N15_hetNOE_13 _Saveframe_category NMR_applied_experiment _Experiment_name 'N15 hetNOE' _Sample_label $sample_1 save_ ####################### # Sample conditions # ####################### save_sample_cond_1 _Saveframe_category sample_conditions _Details . loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units pH 6.5 . pH temperature 298 . K 'ionic strength' 60 . mM pressure 1 . atm stop_ save_ #################### # NMR parameters # #################### ############################## # Assigned chemical shifts # ############################## ################################ # Chemical shift referencing # ################################ save_chemical_shift_reference _Saveframe_category chemical_shift_reference _Details . loop_ _Mol_common_name _Atom_type _Atom_isotope_number _Atom_group _Chem_shift_units _Chem_shift_value _Reference_method _Reference_type _External_reference_sample_geometry _External_reference_location _External_reference_axis _Indirect_shift_ratio DSS H 1 'methyl protons' ppm 0.0 . direct . . . 1.0 DSS N 15 'methyl protons' ppm 0.0 . indirect . . . 0.101329118 DSS C 13 'methyl protons' ppm 0.0 . indirect . . . 0.251449530 stop_ save_ ################################### # Assigned chemical shift lists # ################################### ################################################################### # Chemical Shift Ambiguity Index Value Definitions # # # # The values other than 1 are used for those atoms with different # # chemical shifts that cannot be assigned to stereospecific atoms # # or to specific residues or chains. # # # # Index Value Definition # # # # 1 Unique (including isolated methyl protons, # # geminal atoms, and geminal methyl # # groups with identical chemical shifts) # # (e.g. ILE HD11, HD12, HD13 protons) # # 2 Ambiguity of geminal atoms or geminal methyl # # proton groups (e.g. ASP HB2 and HB3 # # protons, LEU CD1 and CD2 carbons, or # # LEU HD11, HD12, HD13 and HD21, HD22, # # HD23 methyl protons) # # 3 Aromatic atoms on opposite sides of # # symmetrical rings (e.g. TYR HE1 and HE2 # # protons) # # 4 Intraresidue ambiguities (e.g. LYS HG and # # HD protons or TRP HZ2 and HZ3 protons) # # 5 Interresidue ambiguities (LYS 12 vs. LYS 27) # # 6 Intermolecular ambiguities (e.g. ASP 31 CA # # in monomer 1 and ASP 31 CA in monomer 2 # # of an asymmetrical homodimer, duplex # # DNA assignments, or other assignments # # that may apply to atoms in one or more # # molecule in the molecular assembly) # # 9 Ambiguous, specific ambiguity not defined # # # ################################################################### save_chemical_shift_set_1 _Saveframe_category assigned_chemical_shifts _Details . loop_ _Sample_label $sample_1 stop_ _Sample_conditions_label $sample_cond_1 _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name At3g01050.1 _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 1 10 GLU N N 124.4 . 1 2 1 10 GLU H H 8.49 . 1 3 1 10 GLU CA C 56.8 . 1 4 1 10 GLU HA H 4.24 . 1 5 1 10 GLU CB C 30.5 . 1 6 1 10 GLU HB2 H 1.93 . 2 7 1 10 GLU HB3 H 2.02 . 2 8 1 10 GLU CG C 36.4 . 1 9 1 10 GLU HG3 H 2.24 . 2 10 1 10 GLU C C 176.3 . 1 11 2 11 ALA N N 124.5 . 1 12 2 11 ALA H H 8.21 . 1 13 2 11 ALA CA C 52.9 . 1 14 2 11 ALA HA H 4.25 . 1 15 2 11 ALA HB H 1.37 . 1 16 2 11 ALA CB C 19.6 . 1 17 2 11 ALA C C 177.7 . 1 18 3 12 GLU N N 120.2 . 1 19 3 12 GLU H H 8.24 . 1 20 3 12 GLU CA C 56.9 . 1 21 3 12 GLU HA H 4.22 . 1 22 3 12 GLU CB C 30.3 . 1 23 3 12 GLU CG C 36.7 . 1 24 3 12 GLU C C 173.8 . 1 25 4 13 VAL N N 121.2 . 1 26 4 13 VAL H H 8.05 . 1 27 4 13 VAL CA C 62.6 . 1 28 4 13 VAL HA H 4.02 . 1 29 4 13 VAL CB C 32.8 . 1 30 4 13 VAL HB H 1.96 . 1 31 4 13 VAL HG2 H 0.84 . 2 32 4 13 VAL CG2 C 21.0 . 1 33 4 13 VAL C C 176.7 . 1 34 5 14 HIS N N 122.7 . 1 35 5 14 HIS H H 8.43 . 1 36 5 14 HIS CA C 55.8 . 1 37 5 14 HIS HA H 4.74 . 1 38 5 14 HIS CB C 30.5 . 1 39 5 14 HIS HB2 H 3.20 . 2 40 5 14 HIS HB3 H 3.06 . 2 41 5 14 HIS C C 174.8 . 1 42 6 15 ASN N N 120.2 . 1 43 6 15 ASN H H 8.44 . 1 44 6 15 ASN CA C 53.6 . 1 45 6 15 ASN HA H 4.78 . 1 46 6 15 ASN CB C 39.4 . 1 47 6 15 ASN HB3 H 2.79 . 2 48 6 15 ASN CG C 177.0 . 1 49 6 15 ASN ND2 N 112.7 . 1 50 6 15 ASN HD21 H 7.59 . 2 51 6 15 ASN HD22 H 6.89 . 2 52 6 15 ASN C C 176.0 . 1 53 7 16 GLN N N 119.4 . 1 54 7 16 GLN H H 8.17 . 1 55 7 16 GLN CA C 55.3 . 1 56 7 16 GLN HA H 4.70 . 1 57 7 16 GLN CB C 31.2 . 1 58 7 16 GLN HB2 H 1.72 . 2 59 7 16 GLN HB3 H 1.89 . 2 60 7 16 GLN CG C 33.8 . 1 61 7 16 GLN HG2 H 2.08 . 2 62 7 16 GLN HG3 H 2.24 . 2 63 7 16 GLN NE2 N 110.4 . 1 64 7 16 GLN HE21 H 6.64 . 2 65 7 16 GLN HE22 H 7.37 . 2 66 7 16 GLN C C 174.8 . 1 67 8 17 LEU N N 124.5 . 1 68 8 17 LEU H H 8.96 . 1 69 8 17 LEU CA C 54.5 . 1 70 8 17 LEU HA H 4.55 . 1 71 8 17 LEU CB C 45.4 . 1 72 8 17 LEU HB2 H 1.75 . 2 73 8 17 LEU HB3 H 1.36 . 2 74 8 17 LEU CG C 27.0 . 1 75 8 17 LEU HG H 1.57 . 1 76 8 17 LEU HD1 H 0.93 . 2 77 8 17 LEU HD2 H 0.82 . 2 78 8 17 LEU CD1 C 25.0 . 1 79 8 17 LEU CD2 C 25.7 . 1 80 8 17 LEU C C 175.8 . 1 81 9 18 GLU N N 124.5 . 1 82 9 18 GLU H H 8.48 . 1 83 9 18 GLU CA C 56.5 . 1 84 9 18 GLU HA H 4.81 . 1 85 9 18 GLU CB C 31.2 . 1 86 9 18 GLU HB2 H 2.01 . 2 87 9 18 GLU HB3 H 1.77 . 2 88 9 18 GLU CG C 37.1 . 1 89 9 18 GLU HG2 H 1.89 . 2 90 9 18 GLU HG3 H 2.22 . 2 91 9 18 GLU C C 175.6 . 1 92 10 19 ILE N N 124.8 . 1 93 10 19 ILE H H 8.97 . 1 94 10 19 ILE CA C 60.0 . 1 95 10 19 ILE HA H 4.88 . 1 96 10 19 ILE CB C 42.2 . 1 97 10 19 ILE HB H 1.57 . 1 98 10 19 ILE HG2 H 0.02 . 1 99 10 19 ILE CG2 C 16.9 . 1 100 10 19 ILE CG1 C 28.3 . 1 101 10 19 ILE HG12 H 0.69 . 2 102 10 19 ILE HG13 H 1.69 . 2 103 10 19 ILE HD1 H 0.69 . 1 104 10 19 ILE CD1 C 14.3 . 1 105 10 19 ILE C C 175.0 . 1 106 11 20 LYS N N 125.5 . 1 107 11 20 LYS H H 8.60 . 1 108 11 20 LYS CA C 54.2 . 1 109 11 20 LYS HA H 4.72 . 1 110 11 20 LYS CB C 36.7 . 1 111 11 20 LYS HB3 H 1.36 . 2 112 11 20 LYS CG C 25.0 . 1 113 11 20 LYS HG3 H 1.03 . 2 114 11 20 LYS CD C 29.9 . 1 115 11 20 LYS HD3 H 1.40 . 2 116 11 20 LYS CE C 42.2 . 1 117 11 20 LYS HE3 H 2.62 . 2 118 11 20 LYS C C 173.2 . 1 119 12 21 PHE N N 123.0 . 1 120 12 21 PHE H H 8.94 . 1 121 12 21 PHE CA C 56.0 . 1 122 12 21 PHE HA H 5.27 . 1 123 12 21 PHE CB C 39.6 . 1 124 12 21 PHE HB2 H 2.96 . 2 125 12 21 PHE HB3 H 2.72 . 2 126 12 21 PHE HD1 H 6.88 . 1 127 12 21 PHE HD2 H 6.88 . 1 128 12 21 PHE HE1 H 7.04 . 1 129 12 21 PHE HE2 H 7.04 . 1 130 12 21 PHE CD1 C 131.8 . 1 131 12 21 PHE CE1 C 130.4 . 1 132 12 21 PHE CZ C 129.4 . 1 133 12 21 PHE HZ H 6.86 . 1 134 12 21 PHE C C 174.9 . 1 135 13 22 ARG N N 125.3 . 1 136 13 22 ARG H H 8.94 . 1 137 13 22 ARG CA C 54.2 . 1 138 13 22 ARG HA H 5.19 . 1 139 13 22 ARG CB C 30.9 . 1 140 13 22 ARG HB2 H 1.32 . 2 141 13 22 ARG HB3 H 1.22 . 2 142 13 22 ARG CG C 26.3 . 1 143 13 22 ARG HG2 H 1.64 . 2 144 13 22 ARG HG3 H 1.43 . 2 145 13 22 ARG CD C 42.2 . 1 146 13 22 ARG HD3 H 3.29 . 2 147 13 22 ARG C C 176.1 . 1 148 14 23 LEU N N 130.1 . 1 149 14 23 LEU H H 9.29 . 1 150 14 23 LEU CA C 54.8 . 1 151 14 23 LEU HA H 4.80 . 1 152 14 23 LEU CB C 41.5 . 1 153 14 23 LEU HB2 H 1.92 . 2 154 14 23 LEU HB3 H 1.74 . 2 155 14 23 LEU CG C 28.2 . 1 156 14 23 LEU HG H 1.63 . 1 157 14 23 LEU HD1 H 0.59 . 2 158 14 23 LEU HD2 H 0.29 . 2 159 14 23 LEU CD1 C 22.8 . 1 160 14 23 LEU CD2 C 23.7 . 1 161 14 23 LEU C C 180.4 . 1 162 15 24 THR N N 115.1 . 1 163 15 24 THR H H 9.36 . 1 164 15 24 THR CA C 65.5 . 1 165 15 24 THR HA H 4.09 . 1 166 15 24 THR CB C 69.3 . 1 167 15 24 THR HB H 4.43 . 1 168 15 24 THR HG2 H 1.55 . 1 169 15 24 THR CG2 C 23.1 . 1 170 15 24 THR C C 175.5 . 1 171 16 25 ASP N N 118.0 . 1 172 16 25 ASP H H 7.61 . 1 173 16 25 ASP CA C 53.5 . 1 174 16 25 ASP HA H 4.60 . 1 175 16 25 ASP CB C 40.2 . 1 176 16 25 ASP HB2 H 2.62 . 2 177 16 25 ASP HB3 H 3.11 . 2 178 16 25 ASP C C 177.2 . 1 179 17 26 GLY N N 108.6 . 1 180 17 26 GLY H H 8.12 . 1 181 17 26 GLY CA C 45.2 . 1 182 17 26 GLY HA2 H 3.53 . 2 183 17 26 GLY HA3 H 4.36 . 2 184 17 26 GLY C C 173.6 . 1 185 18 27 SER N N 117.8 . 1 186 18 27 SER H H 8.01 . 1 187 18 27 SER CA C 59.0 . 1 188 18 27 SER HA H 4.38 . 1 189 18 27 SER CB C 63.8 . 1 190 18 27 SER HB3 H 3.87 . 2 191 18 27 SER C C 171.6 . 1 192 19 28 ASP N N 117.5 . 1 193 19 28 ASP H H 8.29 . 1 194 19 28 ASP CA C 53.6 . 1 195 19 28 ASP HA H 5.99 . 1 196 19 28 ASP CB C 45.4 . 1 197 19 28 ASP HB2 H 2.13 . 2 198 19 28 ASP HB3 H 2.39 . 2 199 19 28 ASP C C 177.5 . 1 200 20 29 ILE N N 121.5 . 1 201 20 29 ILE H H 9.30 . 1 202 20 29 ILE CA C 61.7 . 1 203 20 29 ILE HA H 4.31 . 1 204 20 29 ILE CB C 41.3 . 1 205 20 29 ILE HB H 1.92 . 1 206 20 29 ILE HG2 H 0.95 . 1 207 20 29 ILE CG2 C 17.3 . 1 208 20 29 ILE CG1 C 27.0 . 1 209 20 29 ILE HG12 H 1.56 . 2 210 20 29 ILE HG13 H 0.99 . 2 211 20 29 ILE HD1 H 0.83 . 1 212 20 29 ILE CD1 C 15.6 . 1 213 20 29 ILE C C 175.9 . 1 214 21 30 GLY N N 115.1 . 1 215 21 30 GLY H H 9.03 . 1 216 21 30 GLY CA C 42.8 . 1 217 21 30 GLY HA2 H 3.49 . 2 218 21 30 GLY HA3 H 4.71 . 2 219 21 30 GLY C C 172.1 . 1 220 22 31 PRO CD C 50.9 . 1 221 22 31 PRO CA C 62.3 . 1 222 22 31 PRO HA H 5.00 . 1 223 22 31 PRO CB C 35.7 . 1 224 22 31 PRO HB2 H 2.04 . 2 225 22 31 PRO HB3 H 1.95 . 2 226 22 31 PRO CG C 25.3 . 1 227 22 31 PRO HG2 H 1.78 . 2 228 22 31 PRO HG3 H 1.95 . 2 229 22 31 PRO HD2 H 3.58 . 2 230 22 31 PRO HD3 H 3.46 . 2 231 22 31 PRO C C 175.7 . 1 232 23 32 LYS N N 121.4 . 1 233 23 32 LYS H H 8.82 . 1 234 23 32 LYS CA C 54.8 . 1 235 23 32 LYS HA H 4.48 . 1 236 23 32 LYS CB C 36.4 . 1 237 23 32 LYS HB3 H 1.59 . 2 238 23 32 LYS CG C 24.8 . 1 239 23 32 LYS HG2 H 1.27 . 2 240 23 32 LYS HG3 H 1.13 . 2 241 23 32 LYS CD C 29.0 . 1 242 23 32 LYS HD3 H 1.60 . 2 243 23 32 LYS CE C 41.9 . 1 244 23 32 LYS HE3 H 2.80 . 2 245 23 32 LYS C C 173.2 . 1 246 24 33 ALA N N 125.4 . 1 247 24 33 ALA H H 8.19 . 1 248 24 33 ALA CA C 51.2 . 1 249 24 33 ALA HA H 4.94 . 1 250 24 33 ALA HB H 1.15 . 1 251 24 33 ALA CB C 20.2 . 1 252 24 33 ALA C C 177.4 . 1 253 25 34 PHE N N 119.3 . 1 254 25 34 PHE H H 8.76 . 1 255 25 34 PHE CA C 55.7 . 1 256 25 34 PHE HA H 5.03 . 1 257 25 34 PHE CB C 42.9 . 1 258 25 34 PHE HB2 H 2.61 . 2 259 25 34 PHE HB3 H 3.17 . 2 260 25 34 PHE HD1 H 7.32 . 1 261 25 34 PHE HD2 H 7.32 . 1 262 25 34 PHE HE1 H 7.33 . 1 263 25 34 PHE HE2 H 7.33 . 1 264 25 34 PHE CD1 C 133.4 . 1 265 25 34 PHE CE1 C 131.4 . 1 266 25 34 PHE CZ C 128.6 . 1 267 25 34 PHE HZ H 7.33 . 1 268 25 34 PHE C C 173.7 . 1 269 26 35 PRO CD C 51.3 . 1 270 26 35 PRO CA C 62.7 . 1 271 26 35 PRO HA H 4.67 . 1 272 26 35 PRO CB C 32.8 . 1 273 26 35 PRO HB2 H 1.95 . 2 274 26 35 PRO HB3 H 2.58 . 2 275 26 35 PRO CG C 27.6 . 1 276 26 35 PRO HG2 H 2.14 . 2 277 26 35 PRO HG3 H 2.07 . 2 278 26 35 PRO HD3 H 3.88 . 2 279 26 35 PRO C C 178.4 . 1 280 27 36 ASP N N 126.5 . 1 281 27 36 ASP H H 8.88 . 1 282 27 36 ASP CA C 57.4 . 1 283 27 36 ASP HA H 4.30 . 1 284 27 36 ASP CB C 40.9 . 1 285 27 36 ASP HB2 H 2.52 . 2 286 27 36 ASP HB3 H 2.65 . 2 287 27 36 ASP C C 176.1 . 1 288 28 37 ALA N N 117.1 . 1 289 28 37 ALA H H 7.76 . 1 290 28 37 ALA CA C 52.9 . 1 291 28 37 ALA HA H 4.38 . 1 292 28 37 ALA HB H 1.41 . 1 293 28 37 ALA CB C 20.2 . 1 294 28 37 ALA C C 177.4 . 1 295 29 38 THR N N 116.4 . 1 296 29 38 THR H H 7.87 . 1 297 29 38 THR CA C 64.9 . 1 298 29 38 THR HA H 4.01 . 1 299 29 38 THR CB C 70.0 . 1 300 29 38 THR HB H 4.06 . 1 301 29 38 THR HG2 H 1.43 . 1 302 29 38 THR CG2 C 21.5 . 1 303 29 38 THR C C 174.3 . 1 304 30 39 THR N N 117.8 . 1 305 30 39 THR H H 8.58 . 1 306 30 39 THR CA C 61.2 . 1 307 30 39 THR HA H 4.71 . 1 308 30 39 THR CB C 71.5 . 1 309 30 39 THR HB H 4.82 . 1 310 30 39 THR HG2 H 1.38 . 1 311 30 39 THR CG2 C 22.4 . 1 312 30 39 THR C C 176.0 . 1 313 31 40 VAL N N 122.6 . 1 314 31 40 VAL H H 8.73 . 1 315 31 40 VAL CA C 66.7 . 1 316 31 40 VAL HA H 3.45 . 1 317 31 40 VAL CB C 31.2 . 1 318 31 40 VAL HB H 2.49 . 1 319 31 40 VAL HG1 H 0.73 . 2 320 31 40 VAL HG2 H 0.90 . 2 321 31 40 VAL CG1 C 22.1 . 1 322 31 40 VAL CG2 C 24.7 . 1 323 31 40 VAL C C 178.9 . 1 324 32 41 SER N N 114.9 . 1 325 32 41 SER H H 8.16 . 1 326 32 41 SER CA C 62.8 . 1 327 32 41 SER HA H 3.78 . 1 328 32 41 SER CB C 62.9 . 1 329 32 41 SER HB3 H 3.81 . 2 330 32 41 SER C C 175.6 . 1 331 33 42 ALA N N 124.2 . 1 332 33 42 ALA H H 7.73 . 1 333 33 42 ALA CA C 55.5 . 1 334 33 42 ALA HA H 4.23 . 1 335 33 42 ALA HB H 1.56 . 1 336 33 42 ALA CB C 18.5 . 1 337 33 42 ALA C C 168.9 . 1 338 34 43 LEU N N 120.6 . 1 339 34 43 LEU H H 7.98 . 1 340 34 43 LEU CA C 58.4 . 1 341 34 43 LEU HA H 3.74 . 1 342 34 43 LEU CB C 41.8 . 1 343 34 43 LEU HB2 H 1.17 . 2 344 34 43 LEU HB3 H 2.11 . 2 345 34 43 LEU CG C 25.7 . 1 346 34 43 LEU HG H 1.62 . 1 347 34 43 LEU HD1 H -0.10 . 2 348 34 43 LEU HD2 H 0.48 . 2 349 34 43 LEU CD1 C 21.9 . 1 350 34 43 LEU CD2 C 25.4 . 1 351 34 43 LEU C C 179.2 . 1 352 35 44 LYS N N 118.1 . 1 353 35 44 LYS H H 7.89 . 1 354 35 44 LYS CA C 61.3 . 1 355 35 44 LYS HA H 3.53 . 1 356 35 44 LYS CB C 33.1 . 1 357 35 44 LYS HB2 H 2.28 . 2 358 35 44 LYS HB3 H 1.48 . 2 359 35 44 LYS CG C 23.1 . 1 360 35 44 LYS HG3 H 0.74 . 2 361 35 44 LYS CD C 28.0 . 1 362 35 44 LYS HD3 H 0.81 . 2 363 35 44 LYS CE C 42.4 . 1 364 35 44 LYS C C 178.2 . 1 365 36 45 GLU N N 118.4 . 1 366 36 45 GLU H H 8.21 . 1 367 36 45 GLU CA C 59.7 . 1 368 36 45 GLU HA H 3.87 . 1 369 36 45 GLU CB C 29.2 . 1 370 36 45 GLU HB2 H 2.05 . 2 371 36 45 GLU HB3 H 2.24 . 2 372 36 45 GLU CG C 36.9 . 1 373 36 45 GLU HG2 H 2.13 . 2 374 36 45 GLU HG3 H 2.46 . 2 375 36 45 GLU C C 179.8 . 1 376 37 46 THR N N 118.8 . 1 377 37 46 THR H H 7.79 . 1 378 37 46 THR CA C 67.7 . 1 379 37 46 THR HA H 4.11 . 1 380 37 46 THR CB C 68.4 . 1 381 37 46 THR HB H 4.52 . 1 382 37 46 THR HG2 H 1.32 . 1 383 37 46 THR CG2 C 21.8 . 1 384 37 46 THR C C 175.1 . 1 385 38 47 VAL N N 122.3 . 1 386 38 47 VAL H H 7.32 . 1 387 38 47 VAL CA C 67.4 . 1 388 38 47 VAL HA H 3.09 . 1 389 38 47 VAL CB C 31.1 . 1 390 38 47 VAL HB H 2.15 . 1 391 38 47 VAL HG1 H 0.90 . 2 392 38 47 VAL HG2 H 0.12 . 2 393 38 47 VAL CG1 C 22.1 . 1 394 38 47 VAL CG2 C 22.4 . 1 395 38 47 VAL C C 175.9 . 1 396 39 48 ILE N N 114.6 . 1 397 39 48 ILE H H 7.30 . 1 398 39 48 ILE CA C 65.6 . 1 399 39 48 ILE HA H 3.43 . 1 400 39 48 ILE CB C 38.8 . 1 401 39 48 ILE HB H 1.74 . 1 402 39 48 ILE HG2 H 0.68 . 1 403 39 48 ILE CG2 C 16.7 . 1 404 39 48 ILE CG1 C 29.2 . 1 405 39 48 ILE HG12 H 0.40 . 2 406 39 48 ILE HG13 H 1.46 . 2 407 39 48 ILE HD1 H 0.40 . 1 408 39 48 ILE CD1 C 14.0 . 1 409 39 48 ILE C C 179.3 . 1 410 40 49 SER N N 114.9 . 1 411 40 49 SER H H 8.23 . 1 412 40 49 SER CA C 61.9 . 1 413 40 49 SER HA H 4.23 . 1 414 40 49 SER CB C 63.5 . 1 415 40 49 SER HB3 H 4.06 . 2 416 40 49 SER C C 176.7 . 1 417 41 50 GLU N N 118.7 . 1 418 41 50 GLU H H 8.34 . 1 419 41 50 GLU CA C 55.6 . 1 420 41 50 GLU HA H 4.46 . 1 421 41 50 GLU CB C 29.3 . 1 422 41 50 GLU HB2 H 1.75 . 2 423 41 50 GLU HB3 H 2.39 . 2 424 41 50 GLU CG C 36.7 . 1 425 41 50 GLU HG2 H 2.21 . 2 426 41 50 GLU HG3 H 2.36 . 2 427 41 50 GLU C C 174.8 . 1 428 42 51 TRP N N 124.8 . 1 429 42 51 TRP H H 7.21 . 1 430 42 51 TRP CA C 56.5 . 1 431 42 51 TRP HA H 4.37 . 1 432 42 51 TRP CB C 29.3 . 1 433 42 51 TRP HB2 H 3.70 . 2 434 42 51 TRP HB3 H 3.06 . 2 435 42 51 TRP CD1 C 128.3 . 1 436 42 51 TRP CE3 C 120.2 . 1 437 42 51 TRP NE1 N 128.9 . 1 438 42 51 TRP HD1 H 7.15 . 1 439 42 51 TRP HE3 H 7.50 . 1 440 42 51 TRP CZ3 C 122.2 . 1 441 42 51 TRP CZ2 C 114.8 . 1 442 42 51 TRP HE1 H 9.50 . 1 443 42 51 TRP HZ3 H 6.74 . 1 444 42 51 TRP CH2 C 125.2 . 1 445 42 51 TRP HZ2 H 7.33 . 1 446 42 51 TRP HH2 H 7.20 . 1 447 42 51 TRP C C 175.5 . 1 448 43 52 PRO CD C 50.3 . 1 449 43 52 PRO CA C 64.1 . 1 450 43 52 PRO HA H 4.27 . 1 451 43 52 PRO CB C 31.8 . 1 452 43 52 PRO HB2 H 2.23 . 2 453 43 52 PRO HB3 H 1.60 . 2 454 43 52 PRO CG C 27.6 . 1 455 43 52 PRO HG2 H 1.69 . 2 456 43 52 PRO HG3 H 1.47 . 2 457 43 52 PRO HD2 H 3.29 . 2 458 43 52 PRO HD3 H 1.87 . 2 459 43 52 PRO C C 177.8 . 1 460 44 53 ARG N N 123.7 . 1 461 44 53 ARG H H 8.43 . 1 462 44 53 ARG CA C 58.4 . 1 463 44 53 ARG HA H 4.13 . 1 464 44 53 ARG CB C 30.3 . 1 465 44 53 ARG HB3 H 1.90 . 2 466 44 53 ARG CG C 27.4 . 1 467 44 53 ARG HG3 H 1.78 . 2 468 44 53 ARG CD C 43.5 . 1 469 44 53 ARG HD3 H 3.28 . 2 470 44 53 ARG C C 177.6 . 1 471 45 54 GLU N N 116.6 . 1 472 45 54 GLU H H 9.07 . 1 473 45 54 GLU CA C 57.7 . 1 474 45 54 GLU HA H 4.24 . 1 475 45 54 GLU CB C 28.9 . 1 476 45 54 GLU HB3 H 2.03 . 2 477 45 54 GLU CG C 36.7 . 1 478 45 54 GLU HG3 H 2.26 . 2 479 45 54 GLU C C 176.4 . 1 480 46 55 LYS N N 122.2 . 1 481 46 55 LYS H H 7.81 . 1 482 46 55 LYS CA C 55.8 . 1 483 46 55 LYS HA H 4.51 . 1 484 46 55 LYS CB C 32.8 . 1 485 46 55 LYS HB2 H 1.93 . 2 486 46 55 LYS HB3 H 1.95 . 2 487 46 55 LYS CG C 25.8 . 1 488 46 55 LYS HG3 H 1.43 . 2 489 46 55 LYS CD C 28.6 . 1 490 46 55 LYS HD3 H 1.68 . 2 491 46 55 LYS CE C 42.2 . 1 492 46 55 LYS HE3 H 2.99 . 2 493 46 55 LYS C C 176.3 . 1 494 47 56 GLU N N 124.4 . 1 495 47 56 GLU H H 8.73 . 1 496 47 56 GLU CA C 57.1 . 1 497 47 56 GLU HA H 4.27 . 1 498 47 56 GLU CB C 30.9 . 1 499 47 56 GLU HB2 H 2.12 . 2 500 47 56 GLU HB3 H 1.98 . 2 501 47 56 GLU CG C 36.7 . 1 502 47 56 GLU HG3 H 2.34 . 2 503 47 56 GLU C C 176.1 . 1 504 48 57 ASN N N 115.0 . 1 505 48 57 ASN H H 8.82 . 1 506 48 57 ASN CA C 54.1 . 1 507 48 57 ASN HA H 4.40 . 1 508 48 57 ASN CB C 37.4 . 1 509 48 57 ASN HB3 H 2.90 . 2 510 48 57 ASN CG C 178.3 . 1 511 48 57 ASN ND2 N 114.0 . 1 512 48 57 ASN HD21 H 7.62 . 2 513 48 57 ASN HD22 H 6.96 . 2 514 48 57 ASN C C 175.1 . 1 515 49 58 GLY N N 106.5 . 1 516 49 58 GLY H H 8.23 . 1 517 49 58 GLY CA C 42.8 . 1 518 49 58 GLY HA2 H 2.22 . 2 519 49 58 GLY HA3 H 2.80 . 2 520 49 58 GLY C C 171.5 . 1 521 50 59 PRO CD C 47.8 . 1 522 50 59 PRO CA C 61.4 . 1 523 50 59 PRO HA H 4.25 . 1 524 50 59 PRO CB C 32.5 . 1 525 50 59 PRO HB2 H 1.62 . 2 526 50 59 PRO HB3 H 1.43 . 2 527 50 59 PRO CG C 27.3 . 1 528 50 59 PRO HG2 H 1.45 . 2 529 50 59 PRO HG3 H 1.16 . 2 530 50 59 PRO HD2 H 1.86 . 2 531 50 59 PRO HD3 H 1.76 . 2 532 50 59 PRO C C 176.2 . 1 533 51 60 LYS N N 118.0 . 1 534 51 60 LYS H H 8.82 . 1 535 51 60 LYS CA C 56.4 . 1 536 51 60 LYS HA H 4.37 . 1 537 51 60 LYS CB C 34.6 . 1 538 51 60 LYS HB3 H 1.85 . 2 539 51 60 LYS CG C 25.0 . 1 540 51 60 LYS HG3 H 1.45 . 2 541 51 60 LYS CD C 28.7 . 1 542 51 60 LYS HD3 H 1.57 . 2 543 51 60 LYS CE C 42.5 . 1 544 51 60 LYS HE3 H 2.92 . 2 545 51 60 LYS C C 177.0 . 1 546 52 61 THR N N 108.5 . 1 547 52 61 THR H H 7.43 . 1 548 52 61 THR CA C 59.4 . 1 549 52 61 THR HA H 4.71 . 1 550 52 61 THR CB C 72.9 . 1 551 52 61 THR HB H 4.37 . 1 552 52 61 THR HG2 H 1.12 . 1 553 52 61 THR CG2 C 21.5 . 1 554 52 61 THR C C 175.4 . 1 555 53 62 VAL N N 120.1 . 1 556 53 62 VAL H H 8.76 . 1 557 53 62 VAL CA C 66.5 . 1 558 53 62 VAL HA H 3.44 . 1 559 53 62 VAL CB C 32.5 . 1 560 53 62 VAL HB H 2.07 . 1 561 53 62 VAL HG1 H 0.67 . 2 562 53 62 VAL HG2 H 0.94 . 2 563 53 62 VAL CG1 C 22.5 . 1 564 53 62 VAL CG2 C 22.4 . 1 565 53 62 VAL C C 178.4 . 1 566 54 63 LYS N N 119.3 . 1 567 54 63 LYS H H 7.83 . 1 568 54 63 LYS CA C 58.6 . 1 569 54 63 LYS HA H 4.10 . 1 570 54 63 LYS CB C 32.6 . 1 571 54 63 LYS HB3 H 1.79 . 2 572 54 63 LYS CG C 25.4 . 1 573 54 63 LYS HG3 H 1.78 . 2 574 54 63 LYS CD C 30.3 . 1 575 54 63 LYS HD3 H 1.91 . 2 576 54 63 LYS CE C 43.4 . 1 577 54 63 LYS HE3 H 3.28 . 2 578 54 63 LYS C C 177.1 . 1 579 55 64 GLU N N 116.1 . 1 580 55 64 GLU H H 7.40 . 1 581 55 64 GLU CA C 57.0 . 1 582 55 64 GLU HA H 4.26 . 1 583 55 64 GLU CB C 31.8 . 1 584 55 64 GLU HB2 H 2.35 . 2 585 55 64 GLU HB3 H 2.02 . 2 586 55 64 GLU CG C 37.7 . 1 587 55 64 GLU HG2 H 2.30 . 2 588 55 64 GLU HG3 H 2.03 . 2 589 55 64 GLU C C 174.8 . 1 590 56 65 VAL N N 118.6 . 1 591 56 65 VAL H H 7.57 . 1 592 56 65 VAL CA C 62.7 . 1 593 56 65 VAL HA H 4.18 . 1 594 56 65 VAL CB C 34.3 . 1 595 56 65 VAL HB H 2.10 . 1 596 56 65 VAL HG1 H 0.70 . 2 597 56 65 VAL HG2 H 0.73 . 2 598 56 65 VAL CG1 C 21.2 . 1 599 56 65 VAL CG2 C 23.2 . 1 600 56 65 VAL C C 173.6 . 1 601 57 66 LYS N N 129.9 . 1 602 57 66 LYS H H 9.07 . 1 603 57 66 LYS CA C 55.0 . 1 604 57 66 LYS HA H 4.42 . 1 605 57 66 LYS CB C 34.5 . 1 606 57 66 LYS HB2 H 1.84 . 2 607 57 66 LYS HB3 H 1.66 . 2 608 57 66 LYS HG3 H 0.74 . 2 609 57 66 LYS C C 174.7 . 1 610 58 67 LEU N N 123.7 . 1 611 58 67 LEU H H 8.24 . 1 612 58 67 LEU CA C 52.9 . 1 613 58 67 LEU HA H 5.57 . 1 614 58 67 LEU CB C 46.7 . 1 615 58 67 LEU HB2 H 1.21 . 2 616 58 67 LEU HB3 H 1.47 . 2 617 58 67 LEU CG C 28.0 . 1 618 58 67 LEU HG H 1.41 . 1 619 58 67 LEU HD1 H 0.90 . 2 620 58 67 LEU HD2 H 0.81 . 2 621 58 67 LEU CD1 C 26.0 . 1 622 58 67 LEU CD2 C 27.9 . 1 623 58 67 LEU C C 175.2 . 1 624 59 68 ILE N N 121.9 . 1 625 59 68 ILE H H 8.86 . 1 626 59 68 ILE CA C 59.5 . 1 627 59 68 ILE HA H 5.00 . 1 628 59 68 ILE CB C 41.9 . 1 629 59 68 ILE HB H 1.62 . 1 630 59 68 ILE HG2 H 0.69 . 1 631 59 68 ILE CG2 C 17.9 . 1 632 59 68 ILE CG1 C 28.3 . 1 633 59 68 ILE HG12 H 0.93 . 2 634 59 68 ILE HG13 H 1.38 . 2 635 59 68 ILE HD1 H 0.73 . 1 636 59 68 ILE CD1 C 14.0 . 1 637 59 68 ILE C C 176.0 . 1 638 60 69 SER N N 120.0 . 1 639 60 69 SER H H 8.79 . 1 640 60 69 SER CA C 56.8 . 1 641 60 69 SER HA H 4.98 . 1 642 60 69 SER CB C 65.5 . 1 643 60 69 SER HB2 H 3.55 . 2 644 60 69 SER HB3 H 3.71 . 2 645 60 69 SER C C 175.1 . 1 646 61 70 ALA N N 134.6 . 1 647 61 70 ALA H H 9.49 . 1 648 61 70 ALA CA C 53.3 . 1 649 61 70 ALA HA H 4.10 . 1 650 61 70 ALA HB H 1.48 . 1 651 61 70 ALA CB C 17.4 . 1 652 61 70 ALA C C 177.4 . 1 653 62 71 GLY N N 103.4 . 1 654 62 71 GLY H H 8.37 . 1 655 62 71 GLY CA C 45.8 . 1 656 62 71 GLY HA2 H 3.47 . 2 657 62 71 GLY HA3 H 4.14 . 2 658 62 71 GLY C C 173.7 . 1 659 63 72 LYS N N 122.1 . 1 660 63 72 LYS H H 7.95 . 1 661 63 72 LYS CA C 54.8 . 1 662 63 72 LYS HA H 4.58 . 1 663 63 72 LYS CB C 34.1 . 1 664 63 72 LYS HB2 H 1.50 . 2 665 63 72 LYS HB3 H 1.85 . 2 666 63 72 LYS CG C 25.1 . 1 667 63 72 LYS HG3 H 1.51 . 2 668 63 72 LYS CD C 29.2 . 1 669 63 72 LYS HD3 H 1.81 . 2 670 63 72 LYS CE C 42.4 . 1 671 63 72 LYS HE3 H 3.13 . 2 672 63 72 LYS C C 174.7 . 1 673 64 73 VAL N N 124.5 . 1 674 64 73 VAL H H 8.58 . 1 675 64 73 VAL CA C 62.9 . 1 676 64 73 VAL HA H 4.18 . 1 677 64 73 VAL CB C 31.8 . 1 678 64 73 VAL HB H 1.97 . 1 679 64 73 VAL HG2 H 0.95 . 2 680 64 73 VAL CG2 C 22.4 . 1 681 64 73 VAL C C 177.0 . 1 682 65 74 LEU N N 129.2 . 1 683 65 74 LEU H H 8.45 . 1 684 65 74 LEU CA C 56.3 . 1 685 65 74 LEU HA H 3.94 . 1 686 65 74 LEU CB C 41.9 . 1 687 65 74 LEU HB2 H 1.18 . 2 688 65 74 LEU HB3 H 1.27 . 2 689 65 74 LEU CG C 27.6 . 1 690 65 74 LEU HG H 0.72 . 1 691 65 74 LEU HD1 H -0.03 . 2 692 65 74 LEU HD2 H 0.46 . 2 693 65 74 LEU CD1 C 22.3 . 1 694 65 74 LEU CD2 C 25.5 . 1 695 65 74 LEU C C 176.7 . 1 696 66 75 GLU N N 122.5 . 1 697 66 75 GLU H H 8.08 . 1 698 66 75 GLU CA C 57.0 . 1 699 66 75 GLU HA H 4.26 . 1 700 66 75 GLU CB C 31.8 . 1 701 66 75 GLU HB2 H 2.19 . 2 702 66 75 GLU HB3 H 1.94 . 2 703 66 75 GLU CG C 36.6 . 1 704 66 75 GLU HG3 H 2.27 . 2 705 66 75 GLU C C 177.0 . 1 706 67 76 ASN N N 122.0 . 1 707 67 76 ASN H H 8.52 . 1 708 67 76 ASN CA C 56.4 . 1 709 67 76 ASN HA H 4.24 . 1 710 67 76 ASN CB C 38.3 . 1 711 67 76 ASN HB3 H 2.83 . 2 712 67 76 ASN ND2 N 110.1 . 1 713 67 76 ASN HD21 H 7.05 . 2 714 67 76 ASN HD22 H 7.63 . 2 715 67 76 ASN C C 175.9 . 1 716 68 77 SER N N 110.4 . 1 717 68 77 SER H H 8.15 . 1 718 68 77 SER CA C 59.0 . 1 719 68 77 SER HA H 4.49 . 1 720 68 77 SER CB C 64.2 . 1 721 68 77 SER HB2 H 3.91 . 2 722 68 77 SER HB3 H 3.86 . 2 723 68 77 SER C C 175.5 . 1 724 69 78 LYS N N 122.9 . 1 725 69 78 LYS H H 7.58 . 1 726 69 78 LYS CA C 56.1 . 1 727 69 78 LYS HA H 4.57 . 1 728 69 78 LYS CB C 34.2 . 1 729 69 78 LYS HB2 H 2.38 . 2 730 69 78 LYS HB3 H 2.15 . 2 731 69 78 LYS CG C 26.7 . 1 732 69 78 LYS HG2 H 1.65 . 2 733 69 78 LYS HG3 H 1.38 . 2 734 69 78 LYS CE C 42.8 . 1 735 69 78 LYS HE3 H 2.90 . 2 736 69 78 LYS C C 174.8 . 1 737 70 79 THR N N 108.3 . 1 738 70 79 THR H H 9.03 . 1 739 70 79 THR CA C 60.0 . 1 740 70 79 THR HA H 5.37 . 1 741 70 79 THR CB C 73.6 . 1 742 70 79 THR HB H 4.50 . 1 743 70 79 THR HG2 H 1.10 . 1 744 70 79 THR CG2 C 22.1 . 1 745 70 79 THR C C 176.3 . 1 746 71 80 VAL N N 119.9 . 1 747 71 80 VAL H H 8.58 . 1 748 71 80 VAL CA C 67.6 . 1 749 71 80 VAL HA H 3.45 . 1 750 71 80 VAL CB C 32.1 . 1 751 71 80 VAL HB H 2.27 . 1 752 71 80 VAL HG1 H 0.90 . 2 753 71 80 VAL HG2 H 0.92 . 2 754 71 80 VAL CG1 C 25.0 . 1 755 71 80 VAL CG2 C 22.4 . 1 756 71 80 VAL C C 177.9 . 1 757 72 81 LYS N N 118.9 . 1 758 72 81 LYS H H 8.24 . 1 759 72 81 LYS CA C 59.6 . 1 760 72 81 LYS HA H 3.70 . 1 761 72 81 LYS CB C 33.2 . 1 762 72 81 LYS HB3 H 1.67 . 2 763 72 81 LYS CG C 24.7 . 1 764 72 81 LYS HG2 H 1.28 . 2 765 72 81 LYS HG3 H 1.36 . 2 766 72 81 LYS CD C 29.6 . 1 767 72 81 LYS HD3 H 1.56 . 2 768 72 81 LYS CE C 42.8 . 1 769 72 81 LYS HE3 H 2.90 . 2 770 72 81 LYS C C 178.1 . 1 771 73 82 ASP N N 115.7 . 1 772 73 82 ASP H H 7.53 . 1 773 73 82 ASP CA C 57.2 . 1 774 73 82 ASP HA H 4.21 . 1 775 73 82 ASP CB C 41.2 . 1 776 73 82 ASP HB2 H 2.18 . 2 777 73 82 ASP HB3 H 2.65 . 2 778 73 82 ASP C C 176.4 . 1 779 74 83 TYR N N 116.5 . 1 780 74 83 TYR H H 7.66 . 1 781 74 83 TYR CA C 58.1 . 1 782 74 83 TYR HA H 4.67 . 1 783 74 83 TYR CB C 39.3 . 1 784 74 83 TYR HB2 H 2.33 . 2 785 74 83 TYR HB3 H 3.35 . 2 786 74 83 TYR HD1 H 7.05 . 1 787 74 83 TYR HD2 H 7.05 . 1 788 74 83 TYR HE1 H 6.73 . 1 789 74 83 TYR HE2 H 6.73 . 1 790 74 83 TYR CD1 C 133.6 . 1 791 74 83 TYR CE1 C 118.6 . 1 792 74 83 TYR C C 175.1 . 1 793 75 84 ARG N N 121.1 . 1 794 75 84 ARG H H 7.32 . 1 795 75 84 ARG CA C 56.8 . 1 796 75 84 ARG HA H 4.27 . 1 797 75 84 ARG CB C 31.5 . 1 798 75 84 ARG HB2 H 1.77 . 2 799 75 84 ARG HB3 H 1.87 . 2 800 75 84 ARG CG C 27.6 . 1 801 75 84 ARG HG2 H 1.77 . 2 802 75 84 ARG HG3 H 1.66 . 2 803 75 84 ARG CD C 43.8 . 1 804 75 84 ARG HD3 H 3.18 . 2 805 75 84 ARG C C 175.8 . 1 806 76 85 SER N N 120.7 . 1 807 76 85 SER H H 8.63 . 1 808 76 85 SER CA C 57.0 . 1 809 76 85 SER HA H 4.83 . 1 810 76 85 SER CB C 63.9 . 1 811 76 85 SER HB2 H 3.86 . 2 812 76 85 SER HB3 H 4.05 . 2 813 76 85 SER C C 173.8 . 1 814 77 86 PRO CD C 51.3 . 1 815 77 86 PRO CA C 64.2 . 1 816 77 86 PRO HA H 4.41 . 1 817 77 86 PRO CB C 32.2 . 1 818 77 86 PRO HB2 H 1.98 . 2 819 77 86 PRO HB3 H 2.32 . 2 820 77 86 PRO CG C 27.6 . 1 821 77 86 PRO HG3 H 2.04 . 2 822 77 86 PRO HD2 H 3.88 . 2 823 77 86 PRO HD3 H 3.82 . 2 824 77 86 PRO C C 177.4 . 1 825 78 87 VAL N N 116.6 . 1 826 78 87 VAL H H 7.79 . 1 827 78 87 VAL CA C 62.9 . 1 828 78 87 VAL HA H 4.15 . 1 829 78 87 VAL CB C 32.9 . 1 830 78 87 VAL HB H 2.12 . 1 831 78 87 VAL HG2 H 0.90 . 2 832 78 87 VAL CG2 C 20.5 . 1 833 78 87 VAL C C 176.6 . 1 834 79 88 SER N N 118.4 . 1 835 79 88 SER H H 8.12 . 1 836 79 88 SER CA C 59.1 . 1 837 79 88 SER HA H 4.39 . 1 838 79 88 SER CB C 64.2 . 1 839 79 88 SER HB2 H 4.14 . 2 840 79 88 SER HB3 H 3.86 . 2 841 79 88 SER C C 174.4 . 1 842 80 89 ASN N N 120.1 . 1 843 80 89 ASN H H 8.28 . 1 844 80 89 ASN CA C 53.8 . 1 845 80 89 ASN HA H 4.69 . 1 846 80 89 ASN CB C 38.6 . 1 847 80 89 ASN HB3 H 2.81 . 2 848 80 89 ASN ND2 N 113.0 . 1 849 80 89 ASN HD21 H 7.64 . 2 850 80 89 ASN HD22 H 6.87 . 2 851 80 89 ASN C C 175.2 . 1 852 81 90 LEU N N 121.8 . 1 853 81 90 LEU H H 7.88 . 1 854 81 90 LEU CA C 55.4 . 1 855 81 90 LEU HA H 4.28 . 1 856 81 90 LEU CB C 42.5 . 1 857 81 90 LEU HB2 H 1.61 . 2 858 81 90 LEU HB3 H 1.55 . 2 859 81 90 LEU CG C 27.2 . 1 860 81 90 LEU HG H 1.44 . 1 861 81 90 LEU HD2 H 0.87 . 2 862 81 90 LEU CD1 C 25.0 . 1 863 81 90 LEU CD2 C 23.4 . 1 864 81 90 LEU C C 177.4 . 1 865 82 91 ALA N N 124.6 . 1 866 82 91 ALA H H 8.30 . 1 867 82 91 ALA CA C 53.4 . 1 868 82 91 ALA HA H 4.38 . 1 869 82 91 ALA HB H 1.42 . 1 870 82 91 ALA CB C 19.0 . 1 871 82 91 ALA C C 178.6 . 1 872 83 92 GLY N N 109.5 . 1 873 83 92 GLY H H 8.47 . 1 874 83 92 GLY CA C 45.8 . 1 875 83 92 GLY HA2 H 3.99 . 2 876 83 92 GLY HA3 H 3.83 . 2 877 83 92 GLY C C 174.1 . 1 878 84 93 ALA N N 123.3 . 1 879 84 93 ALA H H 7.80 . 1 880 84 93 ALA CA C 52.9 . 1 881 84 93 ALA HA H 4.31 . 1 882 84 93 ALA HB H 1.40 . 1 883 84 93 ALA CB C 19.9 . 1 884 84 93 ALA C C 177.5 . 1 885 85 94 VAL N N 121.5 . 1 886 85 94 VAL H H 8.22 . 1 887 85 94 VAL CA C 61.7 . 1 888 85 94 VAL HA H 4.27 . 1 889 85 94 VAL CB C 34.0 . 1 890 85 94 VAL HB H 1.86 . 1 891 85 94 VAL HG1 H 0.82 . 2 892 85 94 VAL HG2 H 0.69 . 2 893 85 94 VAL CG1 C 21.5 . 1 894 85 94 VAL CG2 C 21.7 . 1 895 85 94 VAL C C 176.6 . 1 896 86 95 THR N N 126.6 . 1 897 86 95 THR H H 8.78 . 1 898 86 95 THR CA C 63.2 . 1 899 86 95 THR HA H 4.40 . 1 900 86 95 THR CB C 70.7 . 1 901 86 95 THR HB H 4.00 . 1 902 86 95 THR HG2 H 1.08 . 1 903 86 95 THR CG2 C 21.5 . 1 904 86 95 THR C C 173.1 . 1 905 87 96 THR N N 124.9 . 1 906 87 96 THR H H 8.94 . 1 907 87 96 THR CA C 62.6 . 1 908 87 96 THR HA H 4.85 . 1 909 87 96 THR CB C 69.4 . 1 910 87 96 THR HB H 3.92 . 1 911 87 96 THR HG2 H 0.70 . 1 912 87 96 THR CG2 C 21.5 . 1 913 87 96 THR C C 174.5 . 1 914 88 97 MET N N 127.5 . 1 915 88 97 MET H H 8.96 . 1 916 88 97 MET CA C 54.9 . 1 917 88 97 MET HA H 4.97 . 1 918 88 97 MET CB C 34.5 . 1 919 88 97 MET HB3 H 1.67 . 2 920 88 97 MET CG C 34.1 . 1 921 88 97 MET HG2 H 2.28 . 2 922 88 97 MET HG3 H 2.21 . 2 923 88 97 MET CE C 17.1 . 1 924 88 97 MET C C 174.2 . 1 925 89 98 HIS N N 124.7 . 1 926 89 98 HIS H H 9.47 . 1 927 89 98 HIS CA C 57.9 . 1 928 89 98 HIS HA H 4.95 . 1 929 89 98 HIS CB C 32.1 . 1 930 89 98 HIS HB2 H 2.91 . 2 931 89 98 HIS HB3 H 3.15 . 2 932 89 98 HIS C C 174.8 . 1 933 90 99 VAL N N 121.5 . 1 934 90 99 VAL H H 8.31 . 1 935 90 99 VAL CA C 61.5 . 1 936 90 99 VAL HA H 4.70 . 1 937 90 99 VAL CB C 34.1 . 1 938 90 99 VAL HB H 2.18 . 1 939 90 99 VAL HG1 H 1.01 . 2 940 90 99 VAL HG2 H 0.96 . 2 941 90 99 VAL CG1 C 23.1 . 1 942 90 99 VAL CG2 C 22.8 . 1 943 90 99 VAL C C 176.0 . 1 944 91 100 ILE N N 131.8 . 1 945 91 100 ILE H H 9.25 . 1 946 91 100 ILE CA C 60.0 . 1 947 91 100 ILE HA H 4.47 . 1 948 91 100 ILE CB C 40.6 . 1 949 91 100 ILE HB H 1.66 . 1 950 91 100 ILE HG2 H 0.86 . 1 951 91 100 ILE CG2 C 17.6 . 1 952 91 100 ILE CG1 C 28.0 . 1 953 91 100 ILE HG12 H 1.22 . 2 954 91 100 ILE HG13 H 1.40 . 2 955 91 100 ILE HD1 H 0.79 . 1 956 91 100 ILE CD1 C 12.7 . 1 957 91 100 ILE C C 174.5 . 1 958 92 101 ILE N N 127.8 . 1 959 92 101 ILE H H 8.74 . 1 960 92 101 ILE CA C 57.7 . 1 961 92 101 ILE HA H 4.94 . 1 962 92 101 ILE CB C 36.2 . 1 963 92 101 ILE HB H 2.07 . 1 964 92 101 ILE HG2 H 0.70 . 1 965 92 101 ILE CG2 C 17.9 . 1 966 92 101 ILE CG1 C 27.6 . 1 967 92 101 ILE HG12 H 1.62 . 2 968 92 101 ILE HG13 H 1.28 . 2 969 92 101 ILE HD1 H 0.56 . 1 970 92 101 ILE CD1 C 10.9 . 1 971 92 101 ILE C C 176.4 . 1 972 93 102 GLN N N 128.6 . 1 973 93 102 GLN H H 8.91 . 1 974 93 102 GLN CA C 54.8 . 1 975 93 102 GLN HA H 4.47 . 1 976 93 102 GLN CB C 30.7 . 1 977 93 102 GLN HB3 H 1.91 . 2 978 93 102 GLN CG C 33.9 . 1 979 93 102 GLN HG2 H 2.17 . 2 980 93 102 GLN HG3 H 2.22 . 2 981 93 102 GLN CD C 179.6 . 1 982 93 102 GLN NE2 N 111.7 . 1 983 93 102 GLN HE21 H 6.82 . 2 984 93 102 GLN HE22 H 7.31 . 2 985 93 102 GLN C C 174.3 . 1 986 94 103 ALA N N 127.9 . 1 987 94 103 ALA H H 8.35 . 1 988 94 103 ALA CA C 50.6 . 1 989 94 103 ALA HA H 4.54 . 1 990 94 103 ALA HB H 1.30 . 1 991 94 103 ALA CB C 18.2 . 1 992 94 103 ALA C C 175.7 . 1 993 95 104 PRO CD C 50.6 . 1 994 95 104 PRO CA C 63.2 . 1 995 95 104 PRO HA H 4.40 . 1 996 95 104 PRO CB C 32.2 . 1 997 95 104 PRO HB2 H 1.85 . 2 998 95 104 PRO HB3 H 2.18 . 2 999 95 104 PRO CG C 28.0 . 1 1000 95 104 PRO HG2 H 2.16 . 2 1001 95 104 PRO HG3 H 1.97 . 2 1002 95 104 PRO HD2 H 3.58 . 2 1003 95 104 PRO HD3 H 3.75 . 2 1004 95 104 PRO C C 176.9 . 1 1005 96 105 VAL N N 121.1 . 1 1006 96 105 VAL H H 8.22 . 1 1007 96 105 VAL CA C 62.6 . 1 1008 96 105 VAL HA H 4.12 . 1 1009 96 105 VAL CB C 33.1 . 1 1010 96 105 VAL HB H 2.03 . 1 1011 96 105 VAL HG1 H 0.94 . 2 1012 96 105 VAL HG2 H 0.92 . 2 1013 96 105 VAL CG2 C 20.8 . 1 1014 96 105 VAL C C 176.5 . 1 1015 97 106 THR N N 119.0 . 1 1016 97 106 THR H H 8.25 . 1 1017 97 106 THR CA C 62.0 . 1 1018 97 106 THR HA H 4.29 . 1 1019 97 106 THR CB C 70.0 . 1 1020 97 106 THR HB H 4.16 . 1 1021 97 106 THR HG2 H 1.17 . 1 1022 97 106 THR CG2 C 21.8 . 1 1023 97 106 THR C C 174.5 . 1 1024 98 107 GLU N N 124.2 . 1 1025 98 107 GLU H H 8.46 . 1 1026 98 107 GLU CA C 56.8 . 1 1027 98 107 GLU HA H 4.25 . 1 1028 98 107 GLU CB C 30.6 . 1 1029 98 107 GLU HB3 H 2.02 . 2 1030 98 107 GLU CG C 36.7 . 1 1031 98 107 GLU HG3 H 2.26 . 2 1032 98 107 GLU C C 176.6 . 1 1033 99 108 LYS N N 122.8 . 1 1034 99 108 LYS H H 8.36 . 1 1035 99 108 LYS CA C 56.8 . 1 1036 99 108 LYS HA H 4.24 . 1 1037 99 108 LYS CB C 33.2 . 1 1038 99 108 LYS HB2 H 1.99 . 2 1039 99 108 LYS HB3 H 1.79 . 2 1040 99 108 LYS CG C 29.2 . 1 1041 99 108 LYS HG3 H 1.82 . 2 1042 99 108 LYS CD C 29.6 . 1 1043 99 108 LYS HD3 H 1.50 . 2 1044 99 108 LYS CE C 42.4 . 1 1045 99 108 LYS HE3 H 3.13 . 2 1046 99 108 LYS C C 176.7 . 1 1047 100 109 GLU N N 121.9 . 1 1048 100 109 GLU H H 8.35 . 1 1049 100 109 GLU CA C 57.0 . 1 1050 100 109 GLU HA H 4.23 . 1 1051 100 109 GLU CB C 30.5 . 1 1052 100 109 GLU HB2 H 1.81 . 2 1053 100 109 GLU HB3 H 1.96 . 2 1054 100 109 GLU CG C 36.7 . 1 1055 100 109 GLU HG3 H 2.23 . 2 1056 100 109 GLU C C 176.4 . 1 1057 101 110 LYS N N 123.4 . 1 1058 101 110 LYS H H 8.33 . 1 1059 101 110 LYS CA C 56.4 . 1 1060 101 110 LYS HA H 4.13 . 1 1061 101 110 LYS CB C 33.0 . 1 1062 101 110 LYS HB3 H 1.71 . 2 1063 101 110 LYS CG C 21.2 . 1 1064 101 110 LYS CD C 29.7 . 1 1065 101 110 LYS CE C 42.4 . 1 1066 101 110 LYS C C 176.3 . 1 1067 102 111 LYS N N 124.0 . 1 1068 102 111 LYS H H 8.29 . 1 1069 102 111 LYS CA C 54.2 . 1 1070 102 111 LYS CB C 32.9 . 1 1071 102 111 LYS C C 174.5 . 1 1072 103 112 PRO CD C 51.2 . 1 1073 103 112 PRO CA C 63.3 . 1 1074 103 112 PRO HA H 4.41 . 1 1075 103 112 PRO CB C 32.4 . 1 1076 103 112 PRO CG C 27.8 . 1 1077 103 112 PRO C C 177.0 . 1 1078 104 113 LYS N N 122.2 . 1 1079 104 113 LYS H H 8.48 . 1 1080 104 113 LYS CA C 56.8 . 1 1081 104 113 LYS HA H 4.24 . 1 1082 104 113 LYS CB C 33.5 . 1 1083 104 113 LYS CG C 25.1 . 1 1084 104 113 LYS CD C 29.7 . 1 1085 104 113 LYS CE C 42.4 . 1 1086 104 113 LYS C C 177.2 . 1 1087 105 114 GLY N N 110.1 . 1 1088 105 114 GLY H H 8.32 . 1 1089 105 114 GLY CA C 45.0 . 1 1090 105 114 GLY HA2 H 4.24 . 2 1091 105 114 GLY HA3 H 3.86 . 2 1092 105 114 GLY C C 173.3 . 1 1093 106 115 ASP N N 122.2 . 1 1094 106 115 ASP H H 8.26 . 1 1095 106 115 ASP CA C 52.2 . 1 1096 106 115 ASP HA H 4.86 . 1 1097 106 115 ASP CB C 41.8 . 1 1098 106 115 ASP HB2 H 2.54 . 2 1099 106 115 ASP HB3 H 2.73 . 2 1100 106 115 ASP C C 173.3 . 1 1101 107 116 PRO CD C 50.9 . 1 1102 107 116 PRO CA C 63.8 . 1 1103 107 116 PRO HA H 4.41 . 1 1104 107 116 PRO CB C 32.5 . 1 1105 107 116 PRO HB2 H 1.93 . 2 1106 107 116 PRO HB3 H 2.30 . 2 1107 107 116 PRO CG C 27.6 . 1 1108 107 116 PRO HG2 H 2.02 . 2 1109 107 116 PRO HG3 H 1.96 . 2 1110 107 116 PRO HD2 H 3.88 . 2 1111 107 116 PRO HD3 H 3.82 . 2 1112 107 116 PRO C C 177.5 . 1 1113 108 117 LYS N N 120.0 . 1 1114 108 117 LYS H H 8.42 . 1 1115 108 117 LYS CA C 57.1 . 1 1116 108 117 LYS CB C 32.7 . 1 1117 108 117 LYS CG C 25.2 . 1 1118 108 117 LYS CD C 29.6 . 1 1119 108 117 LYS CE C 42.4 . 1 1120 108 117 LYS C C 177.1 . 1 1121 109 118 MET N N 119.9 . 1 1122 109 118 MET H H 8.06 . 1 1123 109 118 MET CB C 33.0 . 1 1124 109 118 MET CG C 32.3 . 1 1125 109 118 MET CE C 19.6 . 1 1126 109 118 MET C C 176.0 . 1 1127 110 119 ASN N N 120.1 . 1 1128 110 119 ASN H H 8.26 . 1 1129 110 119 ASN CA C 53.6 . 1 1130 110 119 ASN CB C 39.4 . 1 1131 110 119 ASN CG C 177.1 . 1 1132 110 119 ASN ND2 N 112.2 . 1 1133 110 119 ASN HD21 H 6.88 . 2 1134 110 119 ASN HD22 H 7.57 . 2 1135 110 119 ASN C C 174.9 . 1 1136 111 120 LYS N N 122.0 . 1 1137 111 120 LYS H H 8.27 . 1 1138 111 120 LYS CA C 56.8 . 1 1139 111 120 LYS CB C 33.4 . 1 1140 112 121 CYS N N 125.0 . 1 1141 112 121 CYS H H 8.01 . 1 1142 112 121 CYS CA C 56.3 . 1 1143 112 121 CYS CB C 31.0 . 1 1144 112 121 CYS C C 174.7 . 1 1145 113 122 VAL N N 122.7 . 1 1146 113 122 VAL H H 8.10 . 1 1147 113 122 VAL CA C 62.7 . 1 1148 113 122 VAL CB C 32.9 . 1 1149 113 122 VAL CG2 C 21.3 . 1 1150 113 122 VAL C C 174.6 . 1 1151 114 123 CYS N N 123.7 . 1 1152 114 123 CYS H H 8.45 . 1 1153 114 123 CYS CA C 58.9 . 1 1154 114 123 CYS CB C 28.4 . 1 1155 114 123 CYS C C 177.6 . 1 1156 115 124 SER N N 119.6 . 1 1157 115 124 SER H H 8.44 . 1 1158 115 124 SER CA C 58.7 . 1 1159 115 124 SER CB C 64.3 . 1 1160 115 124 SER C C 173.5 . 1 1161 116 125 VAL CA C 62.8 . 1 1162 116 125 VAL CB C 33.6 . 1 1163 116 125 VAL CG2 C 21.1 . 1 1164 116 125 VAL C C 176.1 . 1 1165 117 126 MET N N 125.5 . 1 1166 117 126 MET H H 8.34 . 1 1167 117 126 MET CA C 56.9 . 1 1168 117 126 MET CB C 33.5 . 1 1169 117 126 MET C C 176.0 . 1 stop_ save_