============================================================ | | | Crystallography & NMR System (CNS) | | CNSsolve | | | ============================================================ Version: 1.1 Status: General release ============================================================ Written by: A.T.Brunger, P.D.Adams, G.M.Clore, W.L.DeLano, P.Gros, R.W.Grosse-Kunstleve, J.-S.Jiang, J.Kuszewski, M.Nilges, N.S.Pannu, R.J.Read, L.M.Rice, T.Simonson, G.L.Warren. Copyright (c) 1997-2001 Yale University ============================================================ Running on machine: cesg-master.biochem.wisc.edu (Linux,32-bit) Program started by: lytle Program started at: 08:38:57 on 12-Jan-04 ============================================================ FFT3C: Using FFTPACK4.1 CNSsolve>define( DEFINE>{* selection of atoms other than hydrogens for which coordinates DEFINE> will be generated *} DEFINE>{* to generate coordinates for all unknown atoms use: (not(known)) *} DEFINE>{===>} atom_build=(not(known)); DEFINE>{============================= output files ================================} DEFINE> DEFINE>{* input coordinate file *} DEFINE>{===>} coordinate_infile="1xxx_11.pdb"; DEFINE> DEFINE>{* output coordinate file *} DEFINE>{===>} coordinate_outfile="1xxx_11_cns.pdb"; DEFINE>) CNSsolve> CNSsolve> checkversion 1.1 Program version= 1.1 File version= 1.1 CNSsolve> CNSsolve> evaluate ($log_level=verbose) Assuming literal string "VERBOSE" EVALUATE: symbol $LOG_LEVEL set to "VERBOSE" (string) CNSsolve> evaluate ($par_nonbonded="PROLSQ") EVALUATE: symbol $PAR_NONBONDED set to "PROLSQ" (string) CNSsolve> CNSsolve> !@generateProtonsJFD.inp CNSsolve> CNSsolve>{===========================================================================} CNSsolve>{ things below this line do not need to be changed } CNSsolve>{===========================================================================} CNSsolve> CNSsolve>remarks changed Tue Sep 2 09:48:07 CDT 2003 CNSsolve>remarks by jfd to include a fes residue CNSsolve> CNSsolve>!@generate_tmoc.inp CNSsolve> CNSsolve>topology reset end CNSsolve>structure reset end Status of internal molecular topology database: -> NATOM= 0(MAXA= 40000) NBOND= 0(MAXB= 40000) -> NTHETA= 0(MAXT= 80000) NGRP= 0(MAXGRP= 40000) -> NPHI= 0(MAXP= 80000) NIMPHI= 0(MAXIMP= 40000) -> NNB= 0(MAXNB= 40000) CNSsolve> CNSsolve>topology RTFRDR>{===>} @TOPPAR:topallhdg5.3.pro ASSFIL: file /u/volkman/waterrefine/toppar/topallhdg5.3.pro opened. RTFRDR>remark file topallhdg.pro version 5.3 date 23-Sept-02 RTFRDR>remark for file parallhdg.pro version 5.3 date 13-Feb-02 or later RTFRDR>remark Geometric energy function parameters for distance geometry and RTFRDR>remark simulated annealing. RTFRDR>remark Author: Michael Nilges, EMBL Heidelberg; Institut Pasteur, Paris RTFRDR>remark This file contains modifications from M. Williams, UCL London RTFRDR>remark Last modification 16-Sept-02 RTFRDR> RTFRDR>set echo off message off end RTFRDR>end CNSsolve> CNSsolve>! no chain id. CNSsolve>segment name=" " SEGMENT> chain CHAIN> @TOPPAR:topallhdg5.3.pep CHAIN>REMARKS TOPH19.pep -MACRO for protein sequence CHAIN>SET ECHO=FALSE END CHAIN> sequence SEQUENCE> @1xxx.seq SEQUENCE>GLU SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) = end SEGMNT: 101 residues were inserted into segment " " CHAIN> end SEGMENT>end Status of internal molecular topology database: -> NATOM= 1586(MAXA= 40000) NBOND= 1598(MAXB= 40000) -> NTHETA= 2925(MAXT= 80000) NGRP= 103(MAXGRP= 40000) -> NPHI= 2500(MAXP= 80000) NIMPHI= 774(MAXIMP= 40000) -> NNB= 618(MAXNB= 40000) CNSsolve> CNSsolve>! turn peptide from trans to cis CNSsolve>!patch CISP reference=nil=( resid 80 ) end CNSsolve> CNSsolve>coor @&coordinate_infile COOR>HEADER Structures from CYANA 11-01-2004 COOR>REMARK model 11 COOR>ATOM 1839 N GLU A 1 1.325 0.000 0.000 1.00 0.00 %READC-ERR: atom 1 GLU HN not found in molecular structure %READC-ERR: atom 1 GLU 2HB not found in molecular structure %READC-ERR: atom 1 GLU 3HB not found in molecular structure %READC-ERR: atom 1 GLU QB not found in molecular structure %READC-ERR: atom 1 GLU 2HG not found in molecular structure %READC-ERR: atom 1 GLU 3HG not found in molecular structure %READC-ERR: atom 1 GLU QG not found in molecular structure %READC-ERR: atom 2 ALA QB not found in molecular structure %READC-ERR: atom 2 ALA 1HB not found in molecular structure %READC-ERR: atom 2 ALA 2HB not found in molecular structure %READC-ERR: atom 2 ALA 3HB not found in molecular structure %READC-ERR: atom 3 GLU 2HB not found in molecular structure %READC-ERR: atom 3 GLU 3HB not found in molecular structure %READC-ERR: atom 3 GLU QB not found in molecular structure %READC-ERR: atom 3 GLU 2HG not found in molecular structure %READC-ERR: atom 3 GLU 3HG not found in molecular structure %READC-ERR: atom 3 GLU QG not found in molecular structure %READC-ERR: atom 4 VAL QG1 not found in molecular structure %READC-ERR: atom 4 VAL QG2 not found in molecular structure %READC-ERR: atom 4 VAL 1HG1 not found in molecular structure %READC-ERR: atom 4 VAL 2HG1 not found in molecular structure %READC-ERR: atom 4 VAL 3HG1 not found in molecular structure %READC-ERR: atom 4 VAL 1HG2 not found in molecular structure %READC-ERR: atom 4 VAL 2HG2 not found in molecular structure %READC-ERR: atom 4 VAL 3HG2 not found in molecular structure %READC-ERR: atom 4 VAL QQG not found in molecular structure %READC-ERR: atom 5 HIS 2HB not found in molecular structure %READC-ERR: atom 5 HIS 3HB not found in molecular structure %READC-ERR: atom 5 HIS QB not found in molecular structure %READC-ERR: atom 6 ASN 2HB not found in molecular structure %READC-ERR: atom 6 ASN 3HB not found in molecular structure %READC-ERR: atom 6 ASN QB not found in molecular structure %READC-ERR: atom 6 ASN 1HD2 not found in molecular structure %READC-ERR: atom 6 ASN 2HD2 not found in molecular structure %READC-ERR: atom 6 ASN QD2 not found in molecular structure %READC-ERR: atom 7 GLN 2HB not found in molecular structure %READC-ERR: atom 7 GLN 3HB not found in molecular structure %READC-ERR: atom 7 GLN QB not found in molecular structure %READC-ERR: atom 7 GLN 2HG not found in molecular structure %READC-ERR: atom 7 GLN 3HG not found in molecular structure %READC-ERR: atom 7 GLN QG not found in molecular structure %READC-ERR: atom 7 GLN 1HE2 not found in molecular structure %READC-ERR: atom 7 GLN 2HE2 not found in molecular structure %READC-ERR: atom 7 GLN QE2 not found in molecular structure %READC-ERR: atom 8 LEU 2HB not found in molecular structure %READC-ERR: atom 8 LEU 3HB not found in molecular structure %READC-ERR: atom 8 LEU QB not found in molecular structure %READC-ERR: atom 8 LEU QD1 not found in molecular structure %READC-ERR: atom 8 LEU QD2 not found in molecular structure %READC-ERR: atom 8 LEU 1HD1 not found in molecular structure %READC-ERR: atom 8 LEU 2HD1 not found in molecular structure %READC-ERR: atom 8 LEU 3HD1 not found in molecular structure %READC-ERR: atom 8 LEU 1HD2 not found in molecular structure %READC-ERR: atom 8 LEU 2HD2 not found in molecular structure %READC-ERR: atom 8 LEU 3HD2 not found in molecular structure %READC-ERR: atom 8 LEU QQD not found in molecular structure %READC-ERR: atom 9 GLU 2HB not found in molecular structure %READC-ERR: atom 9 GLU 3HB not found in molecular structure %READC-ERR: atom 9 GLU QB not found in molecular structure %READC-ERR: atom 9 GLU 2HG not found in molecular structure %READC-ERR: atom 9 GLU 3HG not found in molecular structure %READC-ERR: atom 9 GLU QG not found in molecular structure %READC-ERR: atom 10 ILE QG2 not found in molecular structure %READC-ERR: atom 10 ILE 1HG2 not found in molecular structure %READC-ERR: atom 10 ILE 2HG2 not found in molecular structure %READC-ERR: atom 10 ILE 3HG2 not found in molecular structure %READC-ERR: atom 10 ILE 2HG1 not found in molecular structure %READC-ERR: atom 10 ILE 3HG1 not found in molecular structure %READC-ERR: atom 10 ILE QG1 not found in molecular structure %READC-ERR: atom 10 ILE QD1 not found in molecular structure %READC-ERR: atom 10 ILE 1HD1 not found in molecular structure %READC-ERR: atom 10 ILE 2HD1 not found in molecular structure %READC-ERR: atom 10 ILE 3HD1 not found in molecular structure %READC-ERR: atom 11 LYS 2HB not found in molecular structure %READC-ERR: atom 11 LYS 3HB not found in molecular structure %READC-ERR: atom 11 LYS QB not found in molecular structure %READC-ERR: atom 11 LYS 2HG not found in molecular structure %READC-ERR: atom 11 LYS 3HG not found in molecular structure %READC-ERR: atom 11 LYS QG not found in molecular structure %READC-ERR: atom 11 LYS 2HD not found in molecular structure %READC-ERR: atom 11 LYS 3HD not found in molecular structure %READC-ERR: atom 11 LYS QD not found in molecular structure %READC-ERR: atom 11 LYS 2HE not found in molecular structure %READC-ERR: atom 11 LYS 3HE not found in molecular structure %READC-ERR: atom 11 LYS QE not found in molecular structure %READC-ERR: atom 11 LYS 1HZ not found in molecular structure %READC-ERR: atom 11 LYS 2HZ not found in molecular structure %READC-ERR: atom 11 LYS 3HZ not found in molecular structure %READC-ERR: atom 11 LYS QZ not found in molecular structure %READC-ERR: atom 12 PHE 2HB not found in molecular structure %READC-ERR: atom 12 PHE 3HB not found in molecular structure %READC-ERR: atom 12 PHE QB not found in molecular structure %READC-ERR: atom 12 PHE QD not found in molecular structure %READC-ERR: atom 12 PHE QE not found in molecular structure %READC-ERR: atom 12 PHE QR not found in molecular structure %READC-ERR: atom 13 ARG 2HB not found in molecular structure %READC-ERR: atom 13 ARG 3HB not found in molecular structure %READC-ERR: atom 13 ARG QB not found in molecular structure %READC-ERR: atom 13 ARG 2HG not found in molecular structure %READC-ERR: atom 13 ARG 3HG not found in molecular structure %READC-ERR: atom 13 ARG QG not found in molecular structure %READC-ERR: atom 13 ARG 2HD not found in molecular structure %READC-ERR: atom 13 ARG 3HD not found in molecular structure %READC-ERR: atom 13 ARG QD not found in molecular structure %READC-ERR: atom 13 ARG 1HH1 not found in molecular structure %READC-ERR: atom 13 ARG 2HH1 not found in molecular structure %READC-ERR: atom 13 ARG QH1 not found in molecular structure %READC-ERR: atom 13 ARG 1HH2 not found in molecular structure %READC-ERR: atom 13 ARG 2HH2 not found in molecular structure %READC-ERR: atom 13 ARG QH2 not found in molecular structure %READC-ERR: atom 14 LEU 2HB not found in molecular structure %READC-ERR: atom 14 LEU 3HB not found in molecular structure %READC-ERR: atom 14 LEU QB not found in molecular structure %READC-ERR: atom 14 LEU QD1 not found in molecular structure %READC-ERR: atom 14 LEU QD2 not found in molecular structure %READC-ERR: atom 14 LEU 1HD1 not found in molecular structure %READC-ERR: atom 14 LEU 2HD1 not found in molecular structure %READC-ERR: atom 14 LEU 3HD1 not found in molecular structure %READC-ERR: atom 14 LEU 1HD2 not found in molecular structure %READC-ERR: atom 14 LEU 2HD2 not found in molecular structure %READC-ERR: atom 14 LEU 3HD2 not found in molecular structure %READC-ERR: atom 14 LEU QQD not found in molecular structure %READC-ERR: atom 15 THR QG2 not found in molecular structure %READC-ERR: atom 15 THR 1HG2 not found in molecular structure %READC-ERR: atom 15 THR 2HG2 not found in molecular structure %READC-ERR: atom 15 THR 3HG2 not found in molecular structure %READC-ERR: atom 16 ASP 2HB not found in molecular structure %READC-ERR: atom 16 ASP 3HB not found in molecular structure %READC-ERR: atom 16 ASP QB not found in molecular structure %READC-ERR: atom 17 GLY 1HA not found in molecular structure %READC-ERR: atom 17 GLY 2HA not found in molecular structure %READC-ERR: atom 17 GLY QA not found in molecular structure %READC-ERR: atom 18 SER 2HB not found in molecular structure %READC-ERR: atom 18 SER 3HB not found in molecular structure %READC-ERR: atom 18 SER QB not found in molecular structure %READC-ERR: atom 19 ASP 2HB not found in molecular structure %READC-ERR: atom 19 ASP 3HB not found in molecular structure %READC-ERR: atom 19 ASP QB not found in molecular structure %READC-ERR: atom 20 ILE QG2 not found in molecular structure %READC-ERR: atom 20 ILE 1HG2 not found in molecular structure %READC-ERR: atom 20 ILE 2HG2 not found in molecular structure %READC-ERR: atom 20 ILE 3HG2 not found in molecular structure %READC-ERR: atom 20 ILE 2HG1 not found in molecular structure %READC-ERR: atom 20 ILE 3HG1 not found in molecular structure %READC-ERR: atom 20 ILE QG1 not found in molecular structure %READC-ERR: atom 20 ILE QD1 not found in molecular structure %READC-ERR: atom 20 ILE 1HD1 not found in molecular structure %READC-ERR: atom 20 ILE 2HD1 not found in molecular structure %READC-ERR: atom 20 ILE 3HD1 not found in molecular structure %READC-ERR: atom 21 GLY 1HA not found in molecular structure %READC-ERR: atom 21 GLY 2HA not found in molecular structure %READC-ERR: atom 21 GLY QA not found in molecular structure %READC-ERR: atom 22 PRO 2HB not found in molecular structure %READC-ERR: atom 22 PRO 3HB not found in molecular structure %READC-ERR: atom 22 PRO QB not found in molecular structure %READC-ERR: atom 22 PRO 2HG not found in molecular structure %READC-ERR: atom 22 PRO 3HG not found in molecular structure %READC-ERR: atom 22 PRO QG not found in molecular structure %READC-ERR: atom 22 PRO 2HD not found in molecular structure %READC-ERR: atom 22 PRO 3HD not found in molecular structure %READC-ERR: atom 22 PRO QD not found in molecular structure %READC-ERR: atom 23 LYS 2HB not found in molecular structure %READC-ERR: atom 23 LYS 3HB not found in molecular structure %READC-ERR: atom 23 LYS QB not found in molecular structure %READC-ERR: atom 23 LYS 2HG not found in molecular structure %READC-ERR: atom 23 LYS 3HG not found in molecular structure %READC-ERR: atom 23 LYS QG not found in molecular structure %READC-ERR: atom 23 LYS 2HD not found in molecular structure %READC-ERR: atom 23 LYS 3HD not found in molecular structure %READC-ERR: atom 23 LYS QD not found in molecular structure %READC-ERR: atom 23 LYS 2HE not found in molecular structure %READC-ERR: atom 23 LYS 3HE not found in molecular structure %READC-ERR: atom 23 LYS QE not found in molecular structure %READC-ERR: atom 23 LYS 1HZ not found in molecular structure %READC-ERR: atom 23 LYS 2HZ not found in molecular structure %READC-ERR: atom 23 LYS 3HZ not found in molecular structure %READC-ERR: atom 23 LYS QZ not found in molecular structure %READC-ERR: atom 24 ALA QB not found in molecular structure %READC-ERR: atom 24 ALA 1HB not found in molecular structure %READC-ERR: atom 24 ALA 2HB not found in molecular structure %READC-ERR: atom 24 ALA 3HB not found in molecular structure %READC-ERR: atom 25 PHE 2HB not found in molecular structure %READC-ERR: atom 25 PHE 3HB not found in molecular structure %READC-ERR: atom 25 PHE QB not found in molecular structure %READC-ERR: atom 25 PHE QD not found in molecular structure %READC-ERR: atom 25 PHE QE not found in molecular structure %READC-ERR: atom 25 PHE QR not found in molecular structure %READC-ERR: atom 26 PRO 2HB not found in molecular structure %READC-ERR: atom 26 PRO 3HB not found in molecular structure %READC-ERR: atom 26 PRO QB not found in molecular structure %READC-ERR: atom 26 PRO 2HG not found in molecular structure %READC-ERR: atom 26 PRO 3HG not found in molecular structure %READC-ERR: atom 26 PRO QG not found in molecular structure %READC-ERR: atom 26 PRO 2HD not found in molecular structure %READC-ERR: atom 26 PRO 3HD not found in molecular structure %READC-ERR: atom 26 PRO QD not found in molecular structure %READC-ERR: atom 27 ASP 2HB not found in molecular structure %READC-ERR: atom 27 ASP 3HB not found in molecular structure %READC-ERR: atom 27 ASP QB not found in molecular structure %READC-ERR: atom 28 ALA QB not found in molecular structure %READC-ERR: atom 28 ALA 1HB not found in molecular structure %READC-ERR: atom 28 ALA 2HB not found in molecular structure %READC-ERR: atom 28 ALA 3HB not found in molecular structure %READC-ERR: atom 29 THR QG2 not found in molecular structure %READC-ERR: atom 29 THR 1HG2 not found in molecular structure %READC-ERR: atom 29 THR 2HG2 not found in molecular structure %READC-ERR: atom 29 THR 3HG2 not found in molecular structure %READC-ERR: atom 30 THR QG2 not found in molecular structure %READC-ERR: atom 30 THR 1HG2 not found in molecular structure %READC-ERR: atom 30 THR 2HG2 not found in molecular structure %READC-ERR: atom 30 THR 3HG2 not found in molecular structure %READC-ERR: atom 31 VAL QG1 not found in molecular structure %READC-ERR: atom 31 VAL QG2 not found in molecular structure %READC-ERR: atom 31 VAL 1HG1 not found in molecular structure %READC-ERR: atom 31 VAL 2HG1 not found in molecular structure %READC-ERR: atom 31 VAL 3HG1 not found in molecular structure %READC-ERR: atom 31 VAL 1HG2 not found in molecular structure %READC-ERR: atom 31 VAL 2HG2 not found in molecular structure %READC-ERR: atom 31 VAL 3HG2 not found in molecular structure %READC-ERR: atom 31 VAL QQG not found in molecular structure %READC-ERR: atom 32 SER 2HB not found in molecular structure %READC-ERR: atom 32 SER 3HB not found in molecular structure %READC-ERR: atom 32 SER QB not found in molecular structure %READC-ERR: atom 33 ALA QB not found in molecular structure %READC-ERR: atom 33 ALA 1HB not found in molecular structure %READC-ERR: atom 33 ALA 2HB not found in molecular structure %READC-ERR: atom 33 ALA 3HB not found in molecular structure %READC-ERR: atom 34 LEU 2HB not found in molecular structure %READC-ERR: atom 34 LEU 3HB not found in molecular structure %READC-ERR: atom 34 LEU QB not found in molecular structure %READC-ERR: atom 34 LEU QD1 not found in molecular structure %READC-ERR: atom 34 LEU QD2 not found in molecular structure %READC-ERR: atom 34 LEU 1HD1 not found in molecular structure %READC-ERR: atom 34 LEU 2HD1 not found in molecular structure %READC-ERR: atom 34 LEU 3HD1 not found in molecular structure %READC-ERR: atom 34 LEU 1HD2 not found in molecular structure %READC-ERR: atom 34 LEU 2HD2 not found in molecular structure %READC-ERR: atom 34 LEU 3HD2 not found in molecular structure %READC-ERR: atom 34 LEU QQD not found in molecular structure %READC-ERR: atom 35 LYS 2HB not found in molecular structure %READC-ERR: atom 35 LYS 3HB not found in molecular structure %READC-ERR: atom 35 LYS QB not found in molecular structure %READC-ERR: atom 35 LYS 2HG not found in molecular structure %READC-ERR: atom 35 LYS 3HG not found in molecular structure %READC-ERR: atom 35 LYS QG not found in molecular structure %READC-ERR: atom 35 LYS 2HD not found in molecular structure %READC-ERR: atom 35 LYS 3HD not found in molecular structure %READC-ERR: atom 35 LYS QD not found in molecular structure %READC-ERR: atom 35 LYS 2HE not found in molecular structure %READC-ERR: atom 35 LYS 3HE not found in molecular structure %READC-ERR: atom 35 LYS QE not found in molecular structure %READC-ERR: atom 35 LYS 1HZ not found in molecular structure %READC-ERR: atom 35 LYS 2HZ not found in molecular structure %READC-ERR: atom 35 LYS 3HZ not found in molecular structure %READC-ERR: atom 35 LYS QZ not found in molecular structure %READC-ERR: atom 36 GLU 2HB not found in molecular structure %READC-ERR: atom 36 GLU 3HB not found in molecular structure %READC-ERR: atom 36 GLU QB not found in molecular structure %READC-ERR: atom 36 GLU 2HG not found in molecular structure %READC-ERR: atom 36 GLU 3HG not found in molecular structure %READC-ERR: atom 36 GLU QG not found in molecular structure %READC-ERR: atom 37 THR QG2 not found in molecular structure %READC-ERR: atom 37 THR 1HG2 not found in molecular structure %READC-ERR: atom 37 THR 2HG2 not found in molecular structure %READC-ERR: atom 37 THR 3HG2 not found in molecular structure %READC-ERR: atom 38 VAL QG1 not found in molecular structure %READC-ERR: atom 38 VAL QG2 not found in molecular structure %READC-ERR: atom 38 VAL 1HG1 not found in molecular structure %READC-ERR: atom 38 VAL 2HG1 not found in molecular structure %READC-ERR: atom 38 VAL 3HG1 not found in molecular structure %READC-ERR: atom 38 VAL 1HG2 not found in molecular structure %READC-ERR: atom 38 VAL 2HG2 not found in molecular structure %READC-ERR: atom 38 VAL 3HG2 not found in molecular structure %READC-ERR: atom 38 VAL QQG not found in molecular structure %READC-ERR: atom 39 ILE QG2 not found in molecular structure %READC-ERR: atom 39 ILE 1HG2 not found in molecular structure %READC-ERR: atom 39 ILE 2HG2 not found in molecular structure %READC-ERR: atom 39 ILE 3HG2 not found in molecular structure %READC-ERR: atom 39 ILE 2HG1 not found in molecular structure %READC-ERR: atom 39 ILE 3HG1 not found in molecular structure %READC-ERR: atom 39 ILE QG1 not found in molecular structure %READC-ERR: atom 39 ILE QD1 not found in molecular structure %READC-ERR: atom 39 ILE 1HD1 not found in molecular structure %READC-ERR: atom 39 ILE 2HD1 not found in molecular structure %READC-ERR: atom 39 ILE 3HD1 not found in molecular structure %READC-ERR: atom 40 SER 2HB not found in molecular structure %READC-ERR: atom 40 SER 3HB not found in molecular structure %READC-ERR: atom 40 SER QB not found in molecular structure %READC-ERR: atom 41 GLU 2HB not found in molecular structure %READC-ERR: atom 41 GLU 3HB not found in molecular structure %READC-ERR: atom 41 GLU QB not found in molecular structure %READC-ERR: atom 41 GLU 2HG not found in molecular structure %READC-ERR: atom 41 GLU 3HG not found in molecular structure %READC-ERR: atom 41 GLU QG not found in molecular structure %READC-ERR: atom 42 TRP 2HB not found in molecular structure %READC-ERR: atom 42 TRP 3HB not found in molecular structure %READC-ERR: atom 42 TRP QB not found in molecular structure %READC-ERR: atom 43 PRO 2HB not found in molecular structure %READC-ERR: atom 43 PRO 3HB not found in molecular structure %READC-ERR: atom 43 PRO QB not found in molecular structure %READC-ERR: atom 43 PRO 2HG not found in molecular structure %READC-ERR: atom 43 PRO 3HG not found in molecular structure %READC-ERR: atom 43 PRO QG not found in molecular structure %READC-ERR: atom 43 PRO 2HD not found in molecular structure %READC-ERR: atom 43 PRO 3HD not found in molecular structure %READC-ERR: atom 43 PRO QD not found in molecular structure %READC-ERR: atom 44 ARG 2HB not found in molecular structure %READC-ERR: atom 44 ARG 3HB not found in molecular structure %READC-ERR: atom 44 ARG QB not found in molecular structure %READC-ERR: atom 44 ARG 2HG not found in molecular structure %READC-ERR: atom 44 ARG 3HG not found in molecular structure %READC-ERR: atom 44 ARG QG not found in molecular structure %READC-ERR: atom 44 ARG 2HD not found in molecular structure %READC-ERR: atom 44 ARG 3HD not found in molecular structure %READC-ERR: atom 44 ARG QD not found in molecular structure %READC-ERR: atom 44 ARG 1HH1 not found in molecular structure %READC-ERR: atom 44 ARG 2HH1 not found in molecular structure %READC-ERR: atom 44 ARG QH1 not found in molecular structure %READC-ERR: atom 44 ARG 1HH2 not found in molecular structure %READC-ERR: atom 44 ARG 2HH2 not found in molecular structure %READC-ERR: atom 44 ARG QH2 not found in molecular structure %READC-ERR: atom 45 GLU 2HB not found in molecular structure %READC-ERR: atom 45 GLU 3HB not found in molecular structure %READC-ERR: atom 45 GLU QB not found in molecular structure %READC-ERR: atom 45 GLU 2HG not found in molecular structure %READC-ERR: atom 45 GLU 3HG not found in molecular structure %READC-ERR: atom 45 GLU QG not found in molecular structure %READC-ERR: atom 46 LYS 2HB not found in molecular structure %READC-ERR: atom 46 LYS 3HB not found in molecular structure %READC-ERR: atom 46 LYS QB not found in molecular structure %READC-ERR: atom 46 LYS 2HG not found in molecular structure %READC-ERR: atom 46 LYS 3HG not found in molecular structure %READC-ERR: atom 46 LYS QG not found in molecular structure %READC-ERR: atom 46 LYS 2HD not found in molecular structure %READC-ERR: atom 46 LYS 3HD not found in molecular structure %READC-ERR: atom 46 LYS QD not found in molecular structure %READC-ERR: atom 46 LYS 2HE not found in molecular structure %READC-ERR: atom 46 LYS 3HE not found in molecular structure %READC-ERR: atom 46 LYS QE not found in molecular structure %READC-ERR: atom 46 LYS 1HZ not found in molecular structure %READC-ERR: atom 46 LYS 2HZ not found in molecular structure %READC-ERR: atom 46 LYS 3HZ not found in molecular structure %READC-ERR: atom 46 LYS QZ not found in molecular structure %READC-ERR: atom 47 GLU 2HB not found in molecular structure %READC-ERR: atom 47 GLU 3HB not found in molecular structure %READC-ERR: atom 47 GLU QB not found in molecular structure %READC-ERR: atom 47 GLU 2HG not found in molecular structure %READC-ERR: atom 47 GLU 3HG not found in molecular structure %READC-ERR: atom 47 GLU QG not found in molecular structure %READC-ERR: atom 48 ASN 2HB not found in molecular structure %READC-ERR: atom 48 ASN 3HB not found in molecular structure %READC-ERR: atom 48 ASN QB not found in molecular structure %READC-ERR: atom 48 ASN 1HD2 not found in molecular structure %READC-ERR: atom 48 ASN 2HD2 not found in molecular structure %READC-ERR: atom 48 ASN QD2 not found in molecular structure %READC-ERR: atom 49 GLY 1HA not found in molecular structure %READC-ERR: atom 49 GLY 2HA not found in molecular structure %READC-ERR: atom 49 GLY QA not found in molecular structure %READC-ERR: atom 50 PRO 2HB not found in molecular structure %READC-ERR: atom 50 PRO 3HB not found in molecular structure %READC-ERR: atom 50 PRO QB not found in molecular structure %READC-ERR: atom 50 PRO 2HG not found in molecular structure %READC-ERR: atom 50 PRO 3HG not found in molecular structure %READC-ERR: atom 50 PRO QG not found in molecular structure %READC-ERR: atom 50 PRO 2HD not found in molecular structure %READC-ERR: atom 50 PRO 3HD not found in molecular structure %READC-ERR: atom 50 PRO QD not found in molecular structure %READC-ERR: atom 51 LYS 2HB not found in molecular structure %READC-ERR: atom 51 LYS 3HB not found in molecular structure %READC-ERR: atom 51 LYS QB not found in molecular structure %READC-ERR: atom 51 LYS 2HG not found in molecular structure %READC-ERR: atom 51 LYS 3HG not found in molecular structure %READC-ERR: atom 51 LYS QG not found in molecular structure %READC-ERR: atom 51 LYS 2HD not found in molecular structure %READC-ERR: atom 51 LYS 3HD not found in molecular structure %READC-ERR: atom 51 LYS QD not found in molecular structure %READC-ERR: atom 51 LYS 2HE not found in molecular structure %READC-ERR: atom 51 LYS 3HE not found in molecular structure %READC-ERR: atom 51 LYS QE not found in molecular structure %READC-ERR: atom 51 LYS 1HZ not found in molecular structure %READC-ERR: atom 51 LYS 2HZ not found in molecular structure %READC-ERR: atom 51 LYS 3HZ not found in molecular structure %READC-ERR: atom 51 LYS QZ not found in molecular structure %READC-ERR: atom 52 THR QG2 not found in molecular structure %READC-ERR: atom 52 THR 1HG2 not found in molecular structure %READC-ERR: atom 52 THR 2HG2 not found in molecular structure %READC-ERR: atom 52 THR 3HG2 not found in molecular structure %READC-ERR: atom 53 VAL QG1 not found in molecular structure %READC-ERR: atom 53 VAL QG2 not found in molecular structure %READC-ERR: atom 53 VAL 1HG1 not found in molecular structure %READC-ERR: atom 53 VAL 2HG1 not found in molecular structure %READC-ERR: atom 53 VAL 3HG1 not found in molecular structure %READC-ERR: atom 53 VAL 1HG2 not found in molecular structure %READC-ERR: atom 53 VAL 2HG2 not found in molecular structure %READC-ERR: atom 53 VAL 3HG2 not found in molecular structure %READC-ERR: atom 53 VAL QQG not found in molecular structure %READC-ERR: atom 54 LYS 2HB not found in molecular structure %READC-ERR: atom 54 LYS 3HB not found in molecular structure %READC-ERR: atom 54 LYS QB not found in molecular structure %READC-ERR: atom 54 LYS 2HG not found in molecular structure %READC-ERR: atom 54 LYS 3HG not found in molecular structure %READC-ERR: atom 54 LYS QG not found in molecular structure %READC-ERR: atom 54 LYS 2HD not found in molecular structure %READC-ERR: atom 54 LYS 3HD not found in molecular structure %READC-ERR: atom 54 LYS QD not found in molecular structure %READC-ERR: atom 54 LYS 2HE not found in molecular structure %READC-ERR: atom 54 LYS 3HE not found in molecular structure %READC-ERR: atom 54 LYS QE not found in molecular structure %READC-ERR: atom 54 LYS 1HZ not found in molecular structure %READC-ERR: atom 54 LYS 2HZ not found in molecular structure %READC-ERR: atom 54 LYS 3HZ not found in molecular structure %READC-ERR: atom 54 LYS QZ not found in molecular structure %READC-ERR: atom 55 GLU 2HB not found in molecular structure %READC-ERR: atom 55 GLU 3HB not found in molecular structure %READC-ERR: atom 55 GLU QB not found in molecular structure %READC-ERR: atom 55 GLU 2HG not found in molecular structure %READC-ERR: atom 55 GLU 3HG not found in molecular structure %READC-ERR: atom 55 GLU QG not found in molecular structure %READC-ERR: atom 56 VAL QG1 not found in molecular structure %READC-ERR: atom 56 VAL QG2 not found in molecular structure %READC-ERR: atom 56 VAL 1HG1 not found in molecular structure %READC-ERR: atom 56 VAL 2HG1 not found in molecular structure %READC-ERR: atom 56 VAL 3HG1 not found in molecular structure %READC-ERR: atom 56 VAL 1HG2 not found in molecular structure %READC-ERR: atom 56 VAL 2HG2 not found in molecular structure %READC-ERR: atom 56 VAL 3HG2 not found in molecular structure %READC-ERR: atom 56 VAL QQG not found in molecular structure %READC-ERR: atom 57 LYS 2HB not found in molecular structure %READC-ERR: atom 57 LYS 3HB not found in molecular structure %READC-ERR: atom 57 LYS QB not found in molecular structure %READC-ERR: atom 57 LYS 2HG not found in molecular structure %READC-ERR: atom 57 LYS 3HG not found in molecular structure %READC-ERR: atom 57 LYS QG not found in molecular structure %READC-ERR: atom 57 LYS 2HD not found in molecular structure %READC-ERR: atom 57 LYS 3HD not found in molecular structure %READC-ERR: atom 57 LYS QD not found in molecular structure %READC-ERR: atom 57 LYS 2HE not found in molecular structure %READC-ERR: atom 57 LYS 3HE not found in molecular structure %READC-ERR: atom 57 LYS QE not found in molecular structure %READC-ERR: atom 57 LYS 1HZ not found in molecular structure %READC-ERR: atom 57 LYS 2HZ not found in molecular structure %READC-ERR: atom 57 LYS 3HZ not found in molecular structure %READC-ERR: atom 57 LYS QZ not found in molecular structure %READC-ERR: atom 58 LEU 2HB not found in molecular structure %READC-ERR: atom 58 LEU 3HB not found in molecular structure %READC-ERR: atom 58 LEU QB not found in molecular structure %READC-ERR: atom 58 LEU QD1 not found in molecular structure %READC-ERR: atom 58 LEU QD2 not found in molecular structure %READC-ERR: atom 58 LEU 1HD1 not found in molecular structure %READC-ERR: atom 58 LEU 2HD1 not found in molecular structure %READC-ERR: atom 58 LEU 3HD1 not found in molecular structure %READC-ERR: atom 58 LEU 1HD2 not found in molecular structure %READC-ERR: atom 58 LEU 2HD2 not found in molecular structure %READC-ERR: atom 58 LEU 3HD2 not found in molecular structure %READC-ERR: atom 58 LEU QQD not found in molecular structure %READC-ERR: atom 59 ILE QG2 not found in molecular structure %READC-ERR: atom 59 ILE 1HG2 not found in molecular structure %READC-ERR: atom 59 ILE 2HG2 not found in molecular structure %READC-ERR: atom 59 ILE 3HG2 not found in molecular structure %READC-ERR: atom 59 ILE 2HG1 not found in molecular structure %READC-ERR: atom 59 ILE 3HG1 not found in molecular structure %READC-ERR: atom 59 ILE QG1 not found in molecular structure %READC-ERR: atom 59 ILE QD1 not found in molecular structure %READC-ERR: atom 59 ILE 1HD1 not found in molecular structure %READC-ERR: atom 59 ILE 2HD1 not found in molecular structure %READC-ERR: atom 59 ILE 3HD1 not found in molecular structure %READC-ERR: atom 60 SER 2HB not found in molecular structure %READC-ERR: atom 60 SER 3HB not found in molecular structure %READC-ERR: atom 60 SER QB not found in molecular structure %READC-ERR: atom 61 ALA QB not found in molecular structure %READC-ERR: atom 61 ALA 1HB not found in molecular structure %READC-ERR: atom 61 ALA 2HB not found in molecular structure %READC-ERR: atom 61 ALA 3HB not found in molecular structure %READC-ERR: atom 62 GLY 1HA not found in molecular structure %READC-ERR: atom 62 GLY 2HA not found in molecular structure %READC-ERR: atom 62 GLY QA not found in molecular structure %READC-ERR: atom 63 LYS 2HB not found in molecular structure %READC-ERR: atom 63 LYS 3HB not found in molecular structure %READC-ERR: atom 63 LYS QB not found in molecular structure %READC-ERR: atom 63 LYS 2HG not found in molecular structure %READC-ERR: atom 63 LYS 3HG not found in molecular structure %READC-ERR: atom 63 LYS QG not found in molecular structure %READC-ERR: atom 63 LYS 2HD not found in molecular structure %READC-ERR: atom 63 LYS 3HD not found in molecular structure %READC-ERR: atom 63 LYS QD not found in molecular structure %READC-ERR: atom 63 LYS 2HE not found in molecular structure %READC-ERR: atom 63 LYS 3HE not found in molecular structure %READC-ERR: atom 63 LYS QE not found in molecular structure %READC-ERR: atom 63 LYS 1HZ not found in molecular structure %READC-ERR: atom 63 LYS 2HZ not found in molecular structure %READC-ERR: atom 63 LYS 3HZ not found in molecular structure %READC-ERR: atom 63 LYS QZ not found in molecular structure %READC-ERR: atom 64 VAL QG1 not found in molecular structure %READC-ERR: atom 64 VAL QG2 not found in molecular structure %READC-ERR: atom 64 VAL 1HG1 not found in molecular structure %READC-ERR: atom 64 VAL 2HG1 not found in molecular structure %READC-ERR: atom 64 VAL 3HG1 not found in molecular structure %READC-ERR: atom 64 VAL 1HG2 not found in molecular structure %READC-ERR: atom 64 VAL 2HG2 not found in molecular structure %READC-ERR: atom 64 VAL 3HG2 not found in molecular structure %READC-ERR: atom 64 VAL QQG not found in molecular structure %READC-ERR: atom 65 LEU 2HB not found in molecular structure %READC-ERR: atom 65 LEU 3HB not found in molecular structure %READC-ERR: atom 65 LEU QB not found in molecular structure %READC-ERR: atom 65 LEU QD1 not found in molecular structure %READC-ERR: atom 65 LEU QD2 not found in molecular structure %READC-ERR: atom 65 LEU 1HD1 not found in molecular structure %READC-ERR: atom 65 LEU 2HD1 not found in molecular structure %READC-ERR: atom 65 LEU 3HD1 not found in molecular structure %READC-ERR: atom 65 LEU 1HD2 not found in molecular structure %READC-ERR: atom 65 LEU 2HD2 not found in molecular structure %READC-ERR: atom 65 LEU 3HD2 not found in molecular structure %READC-ERR: atom 65 LEU QQD not found in molecular structure %READC-ERR: atom 66 GLU 2HB not found in molecular structure %READC-ERR: atom 66 GLU 3HB not found in molecular structure %READC-ERR: atom 66 GLU QB not found in molecular structure %READC-ERR: atom 66 GLU 2HG not found in molecular structure %READC-ERR: atom 66 GLU 3HG not found in molecular structure %READC-ERR: atom 66 GLU QG not found in molecular structure %READC-ERR: atom 67 ASN 2HB not found in molecular structure %READC-ERR: atom 67 ASN 3HB not found in molecular structure %READC-ERR: atom 67 ASN QB not found in molecular structure %READC-ERR: atom 67 ASN 1HD2 not found in molecular structure %READC-ERR: atom 67 ASN 2HD2 not found in molecular structure %READC-ERR: atom 67 ASN QD2 not found in molecular structure %READC-ERR: atom 68 SER 2HB not found in molecular structure %READC-ERR: atom 68 SER 3HB not found in molecular structure %READC-ERR: atom 68 SER QB not found in molecular structure %READC-ERR: atom 69 LYS 2HB not found in molecular structure %READC-ERR: atom 69 LYS 3HB not found in molecular structure %READC-ERR: atom 69 LYS QB not found in molecular structure %READC-ERR: atom 69 LYS 2HG not found in molecular structure %READC-ERR: atom 69 LYS 3HG not found in molecular structure %READC-ERR: atom 69 LYS QG not found in molecular structure %READC-ERR: atom 69 LYS 2HD not found in molecular structure %READC-ERR: atom 69 LYS 3HD not found in molecular structure %READC-ERR: atom 69 LYS QD not found in molecular structure %READC-ERR: atom 69 LYS 2HE not found in molecular structure %READC-ERR: atom 69 LYS 3HE not found in molecular structure %READC-ERR: atom 69 LYS QE not found in molecular structure %READC-ERR: atom 69 LYS 1HZ not found in molecular structure %READC-ERR: atom 69 LYS 2HZ not found in molecular structure %READC-ERR: atom 69 LYS 3HZ not found in molecular structure %READC-ERR: atom 69 LYS QZ not found in molecular structure %READC-ERR: atom 70 THR QG2 not found in molecular structure %READC-ERR: atom 70 THR 1HG2 not found in molecular structure %READC-ERR: atom 70 THR 2HG2 not found in molecular structure %READC-ERR: atom 70 THR 3HG2 not found in molecular structure %READC-ERR: atom 71 VAL QG1 not found in molecular structure %READC-ERR: atom 71 VAL QG2 not found in molecular structure %READC-ERR: atom 71 VAL 1HG1 not found in molecular structure %READC-ERR: atom 71 VAL 2HG1 not found in molecular structure %READC-ERR: atom 71 VAL 3HG1 not found in molecular structure %READC-ERR: atom 71 VAL 1HG2 not found in molecular structure %READC-ERR: atom 71 VAL 2HG2 not found in molecular structure %READC-ERR: atom 71 VAL 3HG2 not found in molecular structure %READC-ERR: atom 71 VAL QQG not found in molecular structure %READC-ERR: atom 72 LYS 2HB not found in molecular structure %READC-ERR: atom 72 LYS 3HB not found in molecular structure %READC-ERR: atom 72 LYS QB not found in molecular structure %READC-ERR: atom 72 LYS 2HG not found in molecular structure %READC-ERR: atom 72 LYS 3HG not found in molecular structure %READC-ERR: atom 72 LYS QG not found in molecular structure %READC-ERR: atom 72 LYS 2HD not found in molecular structure %READC-ERR: atom 72 LYS 3HD not found in molecular structure %READC-ERR: atom 72 LYS QD not found in molecular structure %READC-ERR: atom 72 LYS 2HE not found in molecular structure %READC-ERR: atom 72 LYS 3HE not found in molecular structure %READC-ERR: atom 72 LYS QE not found in molecular structure %READC-ERR: atom 72 LYS 1HZ not found in molecular structure %READC-ERR: atom 72 LYS 2HZ not found in molecular structure %READC-ERR: atom 72 LYS 3HZ not found in molecular structure %READC-ERR: atom 72 LYS QZ not found in molecular structure %READC-ERR: atom 73 ASP 2HB not found in molecular structure %READC-ERR: atom 73 ASP 3HB not found in molecular structure %READC-ERR: atom 73 ASP QB not found in molecular structure %READC-ERR: atom 74 TYR 2HB not found in molecular structure %READC-ERR: atom 74 TYR 3HB not found in molecular structure %READC-ERR: atom 74 TYR QB not found in molecular structure %READC-ERR: atom 74 TYR QD not found in molecular structure %READC-ERR: atom 74 TYR QE not found in molecular structure %READC-ERR: atom 74 TYR QR not found in molecular structure %READC-ERR: atom 75 ARG 2HB not found in molecular structure %READC-ERR: atom 75 ARG 3HB not found in molecular structure %READC-ERR: atom 75 ARG QB not found in molecular structure %READC-ERR: atom 75 ARG 2HG not found in molecular structure %READC-ERR: atom 75 ARG 3HG not found in molecular structure %READC-ERR: atom 75 ARG QG not found in molecular structure %READC-ERR: atom 75 ARG 2HD not found in molecular structure %READC-ERR: atom 75 ARG 3HD not found in molecular structure %READC-ERR: atom 75 ARG QD not found in molecular structure %READC-ERR: atom 75 ARG 1HH1 not found in molecular structure %READC-ERR: atom 75 ARG 2HH1 not found in molecular structure %READC-ERR: atom 75 ARG QH1 not found in molecular structure %READC-ERR: atom 75 ARG 1HH2 not found in molecular structure %READC-ERR: atom 75 ARG 2HH2 not found in molecular structure %READC-ERR: atom 75 ARG QH2 not found in molecular structure %READC-ERR: atom 76 SER 2HB not found in molecular structure %READC-ERR: atom 76 SER 3HB not found in molecular structure %READC-ERR: atom 76 SER QB not found in molecular structure %READC-ERR: atom 77 PRO 2HB not found in molecular structure %READC-ERR: atom 77 PRO 3HB not found in molecular structure %READC-ERR: atom 77 PRO QB not found in molecular structure %READC-ERR: atom 77 PRO 2HG not found in molecular structure %READC-ERR: atom 77 PRO 3HG not found in molecular structure %READC-ERR: atom 77 PRO QG not found in molecular structure %READC-ERR: atom 77 PRO 2HD not found in molecular structure %READC-ERR: atom 77 PRO 3HD not found in molecular structure %READC-ERR: atom 77 PRO QD not found in molecular structure %READC-ERR: atom 78 VAL QG1 not found in molecular structure %READC-ERR: atom 78 VAL QG2 not found in molecular structure %READC-ERR: atom 78 VAL 1HG1 not found in molecular structure %READC-ERR: atom 78 VAL 2HG1 not found in molecular structure %READC-ERR: atom 78 VAL 3HG1 not found in molecular structure %READC-ERR: atom 78 VAL 1HG2 not found in molecular structure %READC-ERR: atom 78 VAL 2HG2 not found in molecular structure %READC-ERR: atom 78 VAL 3HG2 not found in molecular structure %READC-ERR: atom 78 VAL QQG not found in molecular structure %READC-ERR: atom 79 SER 2HB not found in molecular structure %READC-ERR: atom 79 SER 3HB not found in molecular structure %READC-ERR: atom 79 SER QB not found in molecular structure %READC-ERR: atom 80 ASN 2HB not found in molecular structure %READC-ERR: atom 80 ASN 3HB not found in molecular structure %READC-ERR: atom 80 ASN QB not found in molecular structure %READC-ERR: atom 80 ASN 1HD2 not found in molecular structure %READC-ERR: atom 80 ASN 2HD2 not found in molecular structure %READC-ERR: atom 80 ASN QD2 not found in molecular structure %READC-ERR: atom 81 LEU 2HB not found in molecular structure %READC-ERR: atom 81 LEU 3HB not found in molecular structure %READC-ERR: atom 81 LEU QB not found in molecular structure %READC-ERR: atom 81 LEU QD1 not found in molecular structure %READC-ERR: atom 81 LEU QD2 not found in molecular structure %READC-ERR: atom 81 LEU 1HD1 not found in molecular structure %READC-ERR: atom 81 LEU 2HD1 not found in molecular structure %READC-ERR: atom 81 LEU 3HD1 not found in molecular structure %READC-ERR: atom 81 LEU 1HD2 not found in molecular structure %READC-ERR: atom 81 LEU 2HD2 not found in molecular structure %READC-ERR: atom 81 LEU 3HD2 not found in molecular structure %READC-ERR: atom 81 LEU QQD not found in molecular structure %READC-ERR: atom 82 ALA QB not found in molecular structure %READC-ERR: atom 82 ALA 1HB not found in molecular structure %READC-ERR: atom 82 ALA 2HB not found in molecular structure %READC-ERR: atom 82 ALA 3HB not found in molecular structure %READC-ERR: atom 83 GLY 1HA not found in molecular structure %READC-ERR: atom 83 GLY 2HA not found in molecular structure %READC-ERR: atom 83 GLY QA not found in molecular structure %READC-ERR: atom 84 ALA QB not found in molecular structure %READC-ERR: atom 84 ALA 1HB not found in molecular structure %READC-ERR: atom 84 ALA 2HB not found in molecular structure %READC-ERR: atom 84 ALA 3HB not found in molecular structure %READC-ERR: atom 85 VAL QG1 not found in molecular structure %READC-ERR: atom 85 VAL QG2 not found in molecular structure %READC-ERR: atom 85 VAL 1HG1 not found in molecular structure %READC-ERR: atom 85 VAL 2HG1 not found in molecular structure %READC-ERR: atom 85 VAL 3HG1 not found in molecular structure %READC-ERR: atom 85 VAL 1HG2 not found in molecular structure %READC-ERR: atom 85 VAL 2HG2 not found in molecular structure %READC-ERR: atom 85 VAL 3HG2 not found in molecular structure %READC-ERR: atom 85 VAL QQG not found in molecular structure %READC-ERR: atom 86 THR QG2 not found in molecular structure %READC-ERR: atom 86 THR 1HG2 not found in molecular structure %READC-ERR: atom 86 THR 2HG2 not found in molecular structure %READC-ERR: atom 86 THR 3HG2 not found in molecular structure %READC-ERR: atom 87 THR QG2 not found in molecular structure %READC-ERR: atom 87 THR 1HG2 not found in molecular structure %READC-ERR: atom 87 THR 2HG2 not found in molecular structure %READC-ERR: atom 87 THR 3HG2 not found in molecular structure %READC-ERR: atom 88 MET 2HB not found in molecular structure %READC-ERR: atom 88 MET 3HB not found in molecular structure %READC-ERR: atom 88 MET QB not found in molecular structure %READC-ERR: atom 88 MET 2HG not found in molecular structure %READC-ERR: atom 88 MET 3HG not found in molecular structure %READC-ERR: atom 88 MET QG not found in molecular structure %READC-ERR: atom 88 MET QE not found in molecular structure %READC-ERR: atom 88 MET 1HE not found in molecular structure %READC-ERR: atom 88 MET 2HE not found in molecular structure %READC-ERR: atom 88 MET 3HE not found in molecular structure %READC-ERR: atom 89 HIS 2HB not found in molecular structure %READC-ERR: atom 89 HIS 3HB not found in molecular structure %READC-ERR: atom 89 HIS QB not found in molecular structure %READC-ERR: atom 90 VAL QG1 not found in molecular structure %READC-ERR: atom 90 VAL QG2 not found in molecular structure %READC-ERR: atom 90 VAL 1HG1 not found in molecular structure %READC-ERR: atom 90 VAL 2HG1 not found in molecular structure %READC-ERR: atom 90 VAL 3HG1 not found in molecular structure %READC-ERR: atom 90 VAL 1HG2 not found in molecular structure %READC-ERR: atom 90 VAL 2HG2 not found in molecular structure %READC-ERR: atom 90 VAL 3HG2 not found in molecular structure %READC-ERR: atom 90 VAL QQG not found in molecular structure %READC-ERR: atom 91 ILE QG2 not found in molecular structure %READC-ERR: atom 91 ILE 1HG2 not found in molecular structure %READC-ERR: atom 91 ILE 2HG2 not found in molecular structure %READC-ERR: atom 91 ILE 3HG2 not found in molecular structure %READC-ERR: atom 91 ILE 2HG1 not found in molecular structure %READC-ERR: atom 91 ILE 3HG1 not found in molecular structure %READC-ERR: atom 91 ILE QG1 not found in molecular structure %READC-ERR: atom 91 ILE QD1 not found in molecular structure %READC-ERR: atom 91 ILE 1HD1 not found in molecular structure %READC-ERR: atom 91 ILE 2HD1 not found in molecular structure %READC-ERR: atom 91 ILE 3HD1 not found in molecular structure %READC-ERR: atom 92 ILE QG2 not found in molecular structure %READC-ERR: atom 92 ILE 1HG2 not found in molecular structure %READC-ERR: atom 92 ILE 2HG2 not found in molecular structure %READC-ERR: atom 92 ILE 3HG2 not found in molecular structure %READC-ERR: atom 92 ILE 2HG1 not found in molecular structure %READC-ERR: atom 92 ILE 3HG1 not found in molecular structure %READC-ERR: atom 92 ILE QG1 not found in molecular structure %READC-ERR: atom 92 ILE QD1 not found in molecular structure %READC-ERR: atom 92 ILE 1HD1 not found in molecular structure %READC-ERR: atom 92 ILE 2HD1 not found in molecular structure %READC-ERR: atom 92 ILE 3HD1 not found in molecular structure %READC-ERR: atom 93 GLN 2HB not found in molecular structure %READC-ERR: atom 93 GLN 3HB not found in molecular structure %READC-ERR: atom 93 GLN QB not found in molecular structure %READC-ERR: atom 93 GLN 2HG not found in molecular structure %READC-ERR: atom 93 GLN 3HG not found in molecular structure %READC-ERR: atom 93 GLN QG not found in molecular structure %READC-ERR: atom 93 GLN 1HE2 not found in molecular structure %READC-ERR: atom 93 GLN 2HE2 not found in molecular structure %READC-ERR: atom 93 GLN QE2 not found in molecular structure %READC-ERR: atom 94 ALA QB not found in molecular structure %READC-ERR: atom 94 ALA 1HB not found in molecular structure %READC-ERR: atom 94 ALA 2HB not found in molecular structure %READC-ERR: atom 94 ALA 3HB not found in molecular structure %READC-ERR: atom 95 PRO 2HB not found in molecular structure %READC-ERR: atom 95 PRO 3HB not found in molecular structure %READC-ERR: atom 95 PRO QB not found in molecular structure %READC-ERR: atom 95 PRO 2HG not found in molecular structure %READC-ERR: atom 95 PRO 3HG not found in molecular structure %READC-ERR: atom 95 PRO QG not found in molecular structure %READC-ERR: atom 95 PRO 2HD not found in molecular structure %READC-ERR: atom 95 PRO 3HD not found in molecular structure %READC-ERR: atom 95 PRO QD not found in molecular structure %READC-ERR: atom 96 VAL QG1 not found in molecular structure %READC-ERR: atom 96 VAL QG2 not found in molecular structure %READC-ERR: atom 96 VAL 1HG1 not found in molecular structure %READC-ERR: atom 96 VAL 2HG1 not found in molecular structure %READC-ERR: atom 96 VAL 3HG1 not found in molecular structure %READC-ERR: atom 96 VAL 1HG2 not found in molecular structure %READC-ERR: atom 96 VAL 2HG2 not found in molecular structure %READC-ERR: atom 96 VAL 3HG2 not found in molecular structure %READC-ERR: atom 96 VAL QQG not found in molecular structure %READC-ERR: atom 97 THR QG2 not found in molecular structure %READC-ERR: atom 97 THR 1HG2 not found in molecular structure %READC-ERR: atom 97 THR 2HG2 not found in molecular structure %READC-ERR: atom 97 THR 3HG2 not found in molecular structure %READC-ERR: atom 98 GLU 2HB not found in molecular structure %READC-ERR: atom 98 GLU 3HB not found in molecular structure %READC-ERR: atom 98 GLU QB not found in molecular structure %READC-ERR: atom 98 GLU 2HG not found in molecular structure %READC-ERR: atom 98 GLU 3HG not found in molecular structure %READC-ERR: atom 98 GLU QG not found in molecular structure %READC-ERR: atom 99 LYS 2HB not found in molecular structure %READC-ERR: atom 99 LYS 3HB not found in molecular structure %READC-ERR: atom 99 LYS QB not found in molecular structure %READC-ERR: atom 99 LYS 2HG not found in molecular structure %READC-ERR: atom 99 LYS 3HG not found in molecular structure %READC-ERR: atom 99 LYS QG not found in molecular structure %READC-ERR: atom 99 LYS 2HD not found in molecular structure %READC-ERR: atom 99 LYS 3HD not found in molecular structure %READC-ERR: atom 99 LYS QD not found in molecular structure %READC-ERR: atom 99 LYS 2HE not found in molecular structure %READC-ERR: atom 99 LYS 3HE not found in molecular structure %READC-ERR: atom 99 LYS QE not found in molecular structure %READC-ERR: atom 99 LYS 1HZ not found in molecular structure %READC-ERR: atom 99 LYS 2HZ not found in molecular structure %READC-ERR: atom 99 LYS 3HZ not found in molecular structure %READC-ERR: atom 99 LYS QZ not found in molecular structure %READC-ERR: atom 100 GLU 2HB not found in molecular structure %READC-ERR: atom 100 GLU 3HB not found in molecular structure %READC-ERR: atom 100 GLU QB not found in molecular structure %READC-ERR: atom 100 GLU 2HG not found in molecular structure %READC-ERR: atom 100 GLU 3HG not found in molecular structure %READC-ERR: atom 100 GLU QG not found in molecular structure %READC-ERR: atom 101 LYS 2HB not found in molecular structure %READC-ERR: atom 101 LYS 3HB not found in molecular structure %READC-ERR: atom 101 LYS QB not found in molecular structure %READC-ERR: atom 101 LYS 2HG not found in molecular structure %READC-ERR: atom 101 LYS 3HG not found in molecular structure %READC-ERR: atom 101 LYS QG not found in molecular structure %READC-ERR: atom 101 LYS 2HD not found in molecular structure %READC-ERR: atom 101 LYS 3HD not found in molecular structure %READC-ERR: atom 101 LYS QD not found in molecular structure %READC-ERR: atom 101 LYS 2HE not found in molecular structure %READC-ERR: atom 101 LYS 3HE not found in molecular structure %READC-ERR: atom 101 LYS QE not found in molecular structure %READC-ERR: atom 101 LYS 1HZ not found in molecular structure %READC-ERR: atom 101 LYS 2HZ not found in molecular structure %READC-ERR: atom 101 LYS 3HZ not found in molecular structure %READC-ERR: atom 101 LYS QZ not found in molecular structure %READC-ERR: atom 101 LYS O not found in molecular structure COOR>END CNSsolve>parameter @TOPPAR:parallhdg5.3.pro end PARRDR>! JFD adds FES complex parameters from Milo Westler's calculations PARRDR>! and standard topology. PARRDR> PARRDR>remark file protein-allhdg-ucl.param version UCL date 07-JUL-01 PARRDR>remark for file protein-allhdg-ucl.top version UCL date 14-MAR-00 PARRDR>remark for file protein-allhdg-dih-ucl.top version UCL date 07-JUL-01 PARRDR>remark Geometric energy function parameters for distance geometry and PARRDR>remark simulated annealing. PARRDR>remark Original author: Michael Nilges, EMBL Heidelberg PARRDR>remark Modifications: Mark A. Williams, UCL London PARRDR> PARRDR>set echo off message off end SHOW: sum over selected elements = 2.000000 CNSsolve> CNSsolve> if ( $log_level = verbose ) then CNSsolve> set message=normal echo=on end CNSsolve> else CNSsolve> set message=off echo=off end CNSsolve> end if CNSsolve> CNSsolve> CNSsolve> identity (store1) (none) SELRPN: 0 atoms have been selected out of 1586 CNSsolve> CNSsolve> identity (store1) (&atom_build) SELRPN: 539 atoms have been selected out of 1586 CNSsolve> identity (store1) (store1 or hydrogen) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 809 atoms have been selected out of 1586 SHOW: sum over selected elements = 809.000000 CNSsolve> evaluate ($tobuild=$result) EVALUATE: symbol $TOBUILD set to 809.000 (real) CNSsolve> CNSsolve> !evaluate ($tobuild=0) CNSsolve> CNSsolve> if ( $tobuild > 0 ) then NEXTCD: condition evaluated as true CNSsolve> CNSsolve> fix selection=(not(store1)) end SELRPN: 777 atoms have been selected out of 1586 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 809 atoms have been selected out of 1586 SHOW: sum over selected elements = 809.000000 CNSsolve> evaluate ($moving=$result) EVALUATE: symbol $MOVING set to 809.000 (real) CNSsolve> CNSsolve> if ( $moving > 0 ) then NEXTCD: condition evaluated as true CNSsolve> for $id in id (tag and byres(store1)) loop avco SELRPN: 101 atoms have been selected out of 1586 FOR ID LOOP: symbol ID set to 1.00000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 1.779300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.77930 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 0.452500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.452500 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -2.655800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.65580 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 18.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 5.552429 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.55243 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -0.248000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.248000 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -0.061143 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.611429E-01 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 28.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 9.249727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.24973 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -1.739091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.73909 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -1.707545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.70755 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 43.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 8.253800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.25380 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -2.329600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.32960 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 3.382800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.38280 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 59.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 16 atoms have been selected out of 1586 SHOW: average of selected elements = 11.758688 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.7587 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 16 atoms have been selected out of 1586 SHOW: average of selected elements = -6.198375 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.19838 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 16 atoms have been selected out of 1586 SHOW: average of selected elements = 5.816125 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.81613 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 77.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 7.527600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.52760 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -8.079000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.07900 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 5.064300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.06430 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 91.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 6.833182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 6.83318 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -11.854818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.8548 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 6.135909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.13591 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 108.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 8.236545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.23655 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -15.325000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.3250 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 1.995455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.99545 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 127.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 4.928818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.92882 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -14.039727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.0397 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -0.288000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.288000 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 142.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 3.891364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 3.89136 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -19.129636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.1296 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 0.190636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.190636 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 161.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 1.628636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.62864 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -20.329000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -20.3290 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -4.420545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.42055 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 183.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1586 SHOW: average of selected elements = -0.533778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.533778 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1586 SHOW: average of selected elements = -22.915667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -22.9157 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1586 SHOW: average of selected elements = -0.955667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.955667 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 203.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = 0.286143 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.286143 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = -24.280000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -24.2800 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = -8.795571 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.79557 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 227.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -3.362182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.36218 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -28.070636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -28.0706 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -6.880636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.88064 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 246.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -1.470818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -1.47082 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -31.400091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -31.4001 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -9.762909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.76291 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 260.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -5.695900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -5.69590 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -30.232100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -30.2321 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -11.561200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.5612 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 272.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -3.671600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.67160 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -26.658600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -26.6586 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -11.863200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.8632 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 279.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -5.627667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -5.62767 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -25.219111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -25.2191 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -9.470333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.47033 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 290.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -4.262200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.26220 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -21.599000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.5990 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -8.801300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.80130 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 302.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -4.417636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.41764 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -21.288727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.2887 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -4.078273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.07827 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 321.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -4.090200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.09020 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -17.781000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.7810 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -3.400400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.40040 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 328.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -1.059625 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -1.05963 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -15.594125 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.5941 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -2.680500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.68050 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 342.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -0.869909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.869909 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -15.990091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.9901 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 2.270455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.27045 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 364.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 2.050571 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 2.05057 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -14.644857 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.6449 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 3.855286 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.85529 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 374.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1586 SHOW: average of selected elements = 3.134000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 3.13400 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1586 SHOW: average of selected elements = -18.255278 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.2553 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1586 SHOW: average of selected elements = 3.966111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.96611 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 394.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 6.688500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 6.68850 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -16.741375 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.7414 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 8.318500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 8.31850 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 408.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 11.152300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.1523 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -18.004200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.0042 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 7.588600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.58860 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 420.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 9.501571 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.50157 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -18.890000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.8900 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 11.552857 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 11.5529 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 430.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 6.171273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 6.17127 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -20.206818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -20.2068 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 10.033182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 10.0332 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 444.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 5.591545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.59155 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -24.374273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -24.3743 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 11.513364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 11.5134 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 458.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 5.675900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.67590 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -26.768800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -26.7688 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 7.730300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.73030 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 474.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 2.779889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 2.77989 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -27.996333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -27.9963 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 10.572333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 10.5723 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 485.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 0.908143 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.908143 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -24.530143 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -24.5301 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 9.715429 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.71543 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 495.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 1.946818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.94682 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -24.991909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -24.9919 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 5.453091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.45309 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 514.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 0.851909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.851909 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -28.845909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -28.8459 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 5.921455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.92145 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 536.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -3.218182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.21818 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -27.557636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -27.5576 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 9.129091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.12909 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 551.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -3.117909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.11791 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -23.364455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -23.3645 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 6.400818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.40082 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 565.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -3.636200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.63620 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -26.222100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -26.2221 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 3.067000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.06700 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 581.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -6.206364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -6.20636 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -28.551091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -28.5511 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 5.579727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.57973 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 600.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -8.360444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -8.36044 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -24.802222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -24.8022 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 6.634333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.63433 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 611.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -7.742818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -7.74282 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -22.369455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -22.3695 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 2.311545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.31155 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 626.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1586 SHOW: average of selected elements = -7.507091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -7.50709 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1586 SHOW: average of selected elements = -28.862455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -28.8625 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1586 SHOW: average of selected elements = 0.057455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.574545E-01 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 650.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -10.332500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -10.3325 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -26.660625 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -26.6606 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -2.144250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.14425 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 664.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = -15.471000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -15.4710 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = -27.177143 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -27.1771 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = 0.167071 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.167071 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 688.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -14.428727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -14.4287 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -27.131909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -27.1319 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -6.160727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.16073 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 703.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -10.375273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -10.3753 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -30.831273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -30.8313 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -4.946000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.94600 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 725.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -10.790545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -10.7905 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -34.309545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -34.3095 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -2.916364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.91636 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 740.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -15.104000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -15.1040 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -35.637000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -35.6370 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -1.528300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.52830 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 754.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -12.695600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -12.6956 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -34.063200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -34.0632 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = 0.742200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.742200 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 761.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -9.578875 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -9.57888 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -34.551250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -34.5513 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 2.228000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.22800 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 775.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -8.814364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -8.81436 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -37.247818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -37.2478 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 6.333364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.33336 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 797.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -5.231545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -5.23155 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -35.246000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -35.2460 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 7.377000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.37700 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 811.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -1.630700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -1.63070 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -33.269100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -33.2691 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 6.126800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.12680 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 827.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -0.976000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.976000 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -37.949636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -37.9496 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 7.992273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.99227 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 849.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -3.920636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.92064 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -38.556545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -38.5565 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 3.404636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.40464 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 864.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -1.360900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -1.36090 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -34.643900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -34.6439 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 1.943800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.94380 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 880.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 3.425818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 3.42582 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -34.990364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -34.9904 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 0.667636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.667636 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 902.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 4.106545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.10655 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -30.470000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -30.4700 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 1.262364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.26236 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 921.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 6.607091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 6.60709 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -30.822909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -30.8229 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -2.271455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.27145 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 940.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 8.941889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.94189 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -26.666556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -26.6666 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -1.966000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.96600 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 951.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 10.783714 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 10.7837 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -26.808857 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -26.8089 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -5.194000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.19400 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 961.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = 11.289800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.2898 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -30.068400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -30.0684 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -4.833400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.83340 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 968.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 12.862182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 12.8622 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -30.205273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -30.2053 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -1.617727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.61773 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 990.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 10.540300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 10.5403 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -33.201400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -33.2014 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 1.025500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.02550 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1006.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 8.762273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.76227 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -30.097273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -30.0973 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 3.458364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.45836 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1025.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 8.688727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.68873 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -32.907727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -32.9077 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 8.077455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 8.07745 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1040.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 4.973900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.97390 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -32.172700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -32.1727 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 9.948800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.94880 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1054.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 7.455556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.45556 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -31.338778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -31.3388 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 12.354444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 12.3544 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1065.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 10.455455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 10.4555 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -29.242636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -29.2426 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 9.876273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.87627 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1087.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 10.557000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 10.5570 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -24.903455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -24.9035 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 10.118182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 10.1182 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1101.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 10.419900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 10.4199 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -22.002100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -22.0021 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 6.743200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.74320 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1117.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 14.761909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 14.7619 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -20.408091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -20.4081 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 9.158636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.15864 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1139.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 14.537500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 14.5375 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -25.188200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -25.1882 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 9.788200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.78820 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1151.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1586 SHOW: average of selected elements = 13.728368 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.7284 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1586 SHOW: average of selected elements = -27.559263 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -27.5593 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1586 SHOW: average of selected elements = 5.039211 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.03921 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1172.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = 15.175429 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.1754 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = -20.481071 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -20.4811 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = 2.823214 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.82321 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1196.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 19.046889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 19.0469 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -19.564778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.5648 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 4.459000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.45900 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1207.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 20.085625 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 20.0856 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -17.956750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.9568 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 7.660750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.66075 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1221.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 20.822900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 20.8229 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -14.020800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.0208 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 7.434800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.43480 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1237.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 21.030111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 21.0301 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -15.392889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.3929 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 3.223222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.22322 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1248.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 16.427400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 16.4274 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -14.630500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.6305 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 3.029700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.02970 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1262.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 16.047909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 16.0479 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -12.558455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.5585 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -0.792000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.792000 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1281.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 12.608286 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 12.6083 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -10.734714 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.7347 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -0.785571 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.785571 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1291.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = 9.876400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.87640 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -10.939600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.9396 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -3.351600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.35160 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1298.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 9.961714 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.96171 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -13.334571 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.3346 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -4.971000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.97100 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1308.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 6.604800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 6.60480 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -15.625500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.6255 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -5.377500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.37750 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1324.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 7.398545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.39855 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -19.031182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.0312 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -2.816545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.81655 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1338.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 5.896909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.89691 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -21.916000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.9160 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -6.074364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.07436 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1352.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 3.757800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 3.75780 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -25.280400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -25.2804 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -2.957900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.95790 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1369.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 16 atoms have been selected out of 1586 SHOW: average of selected elements = 5.420250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.42025 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 16 atoms have been selected out of 1586 SHOW: average of selected elements = -27.889188 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -27.8892 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 16 atoms have been selected out of 1586 SHOW: average of selected elements = -6.129312 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.12931 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1387.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 0.388700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.388700 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -29.991300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -29.9913 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -3.612100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.61210 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1403.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 0.744182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.744182 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -34.198455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -34.1985 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -3.770364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.77036 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1422.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -3.670182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.67018 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -35.261091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -35.2611 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -3.336818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.33682 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1441.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -2.612364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.61236 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -40.377000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -40.3770 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -2.938364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.93836 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1458.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -6.323286 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -6.32329 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -41.522571 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -41.5226 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -2.368714 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.36871 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1468.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -7.085000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -7.08500 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -44.569500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -44.5695 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -0.500875 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.500875 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1482.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -8.112400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -8.11240 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -48.357600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -48.3576 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -2.197200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.19720 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1498.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -11.808182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -11.8082 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -46.142455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -46.1425 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -2.749091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.74909 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1512.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -15.027182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -15.0272 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -47.522727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -47.5227 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -6.066273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.06627 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1527.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -11.049636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -11.0496 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -49.571818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -49.5718 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -9.490182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.49018 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1549.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -14.305727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -14.3057 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -45.161818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -45.1618 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -10.810273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.8103 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1564.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -12.218800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -12.2188 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -43.774000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -43.7740 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -14.866400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.8664 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 15 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 15 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 15 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) CNSsolve> evaluate ($ave_x=$result) CNSsolve> show ave(y) (byres(id $id) and known) CNSsolve> evaluate ($ave_y=$result) CNSsolve> show ave(z) (byres(id $id) and known) CNSsolve> evaluate ($ave_z=$result) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) CNSsolve> do (y=$ave_y) (byres(id $id) and store1) CNSsolve> do (z=$ave_z) (byres(id $id) and store1) CNSsolve> CNSsolve> end loop avco CNSsolve> CNSsolve> do (x=x+random(2.0)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (y=y+random(2.0)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (z=z+random(2.0)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> {- start parameter for the side chain building -} CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=20. nbxmod=-2 repel=0.9 wmin=0.1 tolerance=1. NBDSET> rexp=2 irexp=2 inhibit=0.25 NBDSET> end PARRDR> end CNSsolve> CNSsolve> {- Friction coefficient, in 1/ps. -} CNSsolve> do (fbeta=100) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> evaluate ($bath=300.0) EVALUATE: symbol $BATH set to 300.000 (real) CNSsolve> evaluate ($nstep=500) EVALUATE: symbol $NSTEP set to 500.000 (real) CNSsolve> evaluate ($timestep=0.0005) EVALUATE: symbol $TIMESTEP set to 0.500000E-03 (real) CNSsolve> CNSsolve> do (refy=mass) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> do (mass=20) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> igroup interaction SELRPN> (store1) (store1 or known) SELRPN: 809 atoms have been selected out of 1586 SELRPN: 1586 atoms have been selected out of 1586 IGROup> end CNSsolve> CNSsolve> {- turn on initial energy terms -} CNSsolve> flags exclude * include bond angle vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 2427 NBONDS: generating intra-molecular exclusion list with mode=-2 MAKINB: mode -2 found 809 exclusions and 0 interactions(1-4) %atoms " -3 -GLU -HN " and " -3 -GLU -CB " only 0.10 A apart %atoms " -7 -GLN -HG2 " and " -7 -GLN -HE21" only 0.09 A apart %atoms " -10 -ILE -HD12" and " -10 -ILE -HD13" only 0.09 A apart %atoms " -34 -LEU -HD11" and " -34 -LEU -HD23" only 0.09 A apart %atoms " -35 -LYS -HE2 " and " -35 -LYS -HZ3 " only 0.04 A apart %atoms " -38 -VAL -HN " and " -38 -VAL -HG12" only 0.10 A apart %atoms " -42 -TRP -HB1 " and " -42 -TRP -HD1 " only 0.07 A apart %atoms " -45 -GLU -HB1 " and " -45 -GLU -HB2 " only 0.09 A apart %atoms " -46 -LYS -HA " and " -46 -LYS -HZ1 " only 0.09 A apart %atoms " -50 -PRO -HA " and " -50 -PRO -HG1 " only 0.10 A apart %atoms " -51 -LYS -HD1 " and " -51 -LYS -HD2 " only 0.09 A apart %atoms " -64 -VAL -HG21" and " -64 -VAL -HG23" only 0.05 A apart %atoms " -68 -SER -HA " and " -68 -SER -HB1 " only 0.08 A apart %atoms " -76 -SER -HB1 " and " -76 -SER -HB2 " only 0.08 A apart %atoms " -93 -GLN -HG2 " and " -93 -GLN -HE21" only 0.06 A apart NBONDS: found 95661 intra-atom interactions NBONDS: found 15 nonbonded violations %atoms " -9 -GLU -HA " and " -9 -GLU -HB1 " only 0.08 A apart NBONDS: found 94411 intra-atom interactions NBONDS: found 1 nonbonded violations NBONDS: found 89918 intra-atom interactions NBONDS: found 87488 intra-atom interactions NBONDS: found 88251 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0000 ----------------------- | Etotal =416497.082 grad(E)=584.851 E(BOND)=62823.347 E(ANGL)=201364.933 | | E(VDW )=152308.803 | ------------------------------------------------------------------------------- NBONDS: found 88644 intra-atom interactions NBONDS: found 88693 intra-atom interactions NBONDS: found 88728 intra-atom interactions NBONDS: found 88701 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0000 ----------------------- | Etotal =152819.826 grad(E)=349.071 E(BOND)=22067.074 E(ANGL)=53259.033 | | E(VDW )=77493.719 | ------------------------------------------------------------------------------- NBONDS: found 88564 intra-atom interactions NBONDS: found 88578 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0000 ----------------------- | Etotal =135673.923 grad(E)=330.685 E(BOND)=20266.629 E(ANGL)=44016.545 | | E(VDW )=71390.749 | ------------------------------------------------------------------------------- NBONDS: found 88567 intra-atom interactions --------------- cycle= 40 ------ stepsize= 0.0004 ----------------------- | Etotal =133913.667 grad(E)=329.749 E(BOND)=20219.590 E(ANGL)=43078.868 | | E(VDW )=70615.208 | ------------------------------------------------------------------------------- --------------- cycle= 50 ------ stepsize= 0.0006 ----------------------- | Etotal =133656.622 grad(E)=329.492 E(BOND)=20196.732 E(ANGL)=42982.262 | | E(VDW )=70477.629 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> flags exclude vdw include impr end CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=535681.771 E(kin)=719.635 temperature=298.423 | | Etotal =534962.136 grad(E)=655.434 E(BOND)=20196.732 E(ANGL)=42982.262 | | E(IMPR)=471783.142 | ------------------------------------------------------------------------------- -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=347801.776 E(kin)=55243.095 temperature=22908.603 | | Etotal =292558.681 grad(E)=412.247 E(BOND)=42240.396 E(ANGL)=106518.929 | | E(IMPR)=143799.356 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 1.96648 -26.30929 0.93441 velocity [A/ps] : -3.38535 -1.12268 -1.75199 ang. mom. [amu A/ps] : -25053.76644 235380.32616 97461.59201 kin. ener. [Kcal/mol] : 305.31790 CNSsolve> CNSsolve> flags include vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 2427 NBONDS: found 88600 intra-atom interactions NBONDS: found 88396 intra-atom interactions NBONDS: found 88540 intra-atom interactions NBONDS: found 88579 intra-atom interactions NBONDS: found 88663 intra-atom interactions NBONDS: found 88602 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0002 ----------------------- | Etotal =261610.675 grad(E)=413.169 E(BOND)=37884.604 E(ANGL)=76961.164 | | E(IMPR)=104065.586 E(VDW )=42699.322 | ------------------------------------------------------------------------------- NBONDS: found 88851 intra-atom interactions NBONDS: found 88887 intra-atom interactions NBONDS: found 88803 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0002 ----------------------- | Etotal =159708.282 grad(E)=281.945 E(BOND)=19054.279 E(ANGL)=28950.519 | | E(IMPR)=71245.167 E(VDW )=40458.316 | ------------------------------------------------------------------------------- NBONDS: found 88879 intra-atom interactions NBONDS: found 88935 intra-atom interactions NBONDS: found 88963 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0001 ----------------------- | Etotal =141212.537 grad(E)=272.686 E(BOND)=18781.599 E(ANGL)=24815.644 | | E(IMPR)=58054.595 E(VDW )=39560.700 | ------------------------------------------------------------------------------- NBONDS: found 89010 intra-atom interactions NBONDS: found 88905 intra-atom interactions --------------- cycle= 40 ------ stepsize= -0.0001 ----------------------- | Etotal =121512.770 grad(E)=274.260 E(BOND)=17776.256 E(ANGL)=20581.948 | | E(IMPR)=43838.584 E(VDW )=39315.981 | ------------------------------------------------------------------------------- NBONDS: found 88893 intra-atom interactions NBONDS: found 88883 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0001 ----------------------- | Etotal =105497.694 grad(E)=267.571 E(BOND)=16967.251 E(ANGL)=14246.299 | | E(IMPR)=35900.144 E(VDW )=38384.000 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=106247.721 E(kin)=750.027 temperature=311.027 | | Etotal =105497.694 grad(E)=267.571 E(BOND)=16967.251 E(ANGL)=14246.299 | | E(IMPR)=35900.144 E(VDW )=38384.000 | ------------------------------------------------------------------------------- NBONDS: found 88903 intra-atom interactions NBONDS: found 88855 intra-atom interactions -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=104366.831 E(kin)=1373.590 temperature=569.610 | | Etotal =102993.241 grad(E)=271.026 E(BOND)=17248.440 E(ANGL)=14238.790 | | E(IMPR)=33295.436 E(VDW )=38210.575 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 1.95333 -26.28198 0.93296 velocity [A/ps] : 0.27925 0.14149 0.38586 ang. mom. [amu A/ps] : -41911.57129 9982.09806 14688.73854 kin. ener. [Kcal/mol] : 4.77380 CNSsolve> CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=2. nbxmod=-3 repel=0.75 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=100 nprint=25 end POWELL: number of degrees of freedom= 2427 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 2666 exclusions and 0 interactions(1-4) NBONDS: found 87016 intra-atom interactions NBONDS: found 87504 intra-atom interactions NBONDS: found 87431 intra-atom interactions NBONDS: found 87485 intra-atom interactions --------------- cycle= 25 ------ stepsize= 0.0000 ----------------------- | Etotal =35969.125 grad(E)=67.507 E(BOND)=1002.142 E(ANGL)=11891.551 | | E(IMPR)=23072.117 E(VDW )=3.316 | ------------------------------------------------------------------------------- --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =34952.259 grad(E)=50.199 E(BOND)=992.109 E(ANGL)=10438.741 | | E(IMPR)=23518.878 E(VDW )=2.532 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=35680.888 E(kin)=728.636 temperature=302.156 | | Etotal =34952.252 grad(E)=50.199 E(BOND)=992.108 E(ANGL)=10438.726 | | E(IMPR)=23518.885 E(VDW )=2.532 | ------------------------------------------------------------------------------- NBONDS: found 87470 intra-atom interactions NBONDS: found 87401 intra-atom interactions NBONDS: found 87388 intra-atom interactions NBONDS: found 87416 intra-atom interactions NBONDS: found 87411 intra-atom interactions NBONDS: found 87445 intra-atom interactions NBONDS: found 87458 intra-atom interactions NBONDS: found 87499 intra-atom interactions NBONDS: found 87527 intra-atom interactions NBONDS: found 87516 intra-atom interactions NBONDS: found 87462 intra-atom interactions NBONDS: found 87530 intra-atom interactions NBONDS: found 87521 intra-atom interactions NBONDS: found 87429 intra-atom interactions NBONDS: found 87426 intra-atom interactions NBONDS: found 87446 intra-atom interactions NBONDS: found 87462 intra-atom interactions NBONDS: found 87434 intra-atom interactions NBONDS: found 87380 intra-atom interactions NBONDS: found 87379 intra-atom interactions NBONDS: found 87402 intra-atom interactions NBONDS: found 87425 intra-atom interactions NBONDS: found 87440 intra-atom interactions NBONDS: found 87456 intra-atom interactions NBONDS: found 87429 intra-atom interactions NBONDS: found 87441 intra-atom interactions NBONDS: found 87426 intra-atom interactions NBONDS: found 87444 intra-atom interactions NBONDS: found 87404 intra-atom interactions NBONDS: found 87418 intra-atom interactions NBONDS: found 87424 intra-atom interactions NBONDS: found 87429 intra-atom interactions NBONDS: found 87420 intra-atom interactions NBONDS: found 87448 intra-atom interactions NBONDS: found 87420 intra-atom interactions NBONDS: found 87410 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=5915.567 E(kin)=2063.421 temperature=855.674 | | Etotal =3852.146 grad(E)=82.939 E(BOND)=332.476 E(ANGL)=1025.085 | | E(IMPR)=2492.926 E(VDW )=1.658 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 1.95098 -26.28552 0.92875 velocity [A/ps] : 0.40495 -0.06977 0.14667 ang. mom. [amu A/ps] : 43581.46145 -17069.00686 17759.76878 kin. ener. [Kcal/mol] : 3.68081 CNSsolve> CNSsolve> {- turn on all energy terms -} CNSsolve> flags include dihe ? end EFLAGS: the following energy flags are set EFLAGS: BOND ANGL DIHE IMPR VDW CNSsolve> CNSsolve> {- set repel to ~vdw radii -} CNSsolve> parameter PARRDR> nbonds NBDSET> repel=0.89 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=500 nprint=50 end POWELL: number of degrees of freedom= 2427 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 2666 exclusions and 0 interactions(1-4) NBONDS: found 87411 intra-atom interactions NBONDS: found 87434 intra-atom interactions NBONDS: found 87388 intra-atom interactions NBONDS: found 87432 intra-atom interactions NBONDS: found 87418 intra-atom interactions NBONDS: found 87433 intra-atom interactions NBONDS: found 87418 intra-atom interactions NBONDS: found 87444 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =1710.702 grad(E)=54.216 E(BOND)=3.949 E(ANGL)=1075.614 | | E(DIHE)=78.584 E(IMPR)=452.651 E(VDW )=99.904 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> flags exclude * include bond angl impr dihe vdw end CNSsolve> CNSsolve> {- return masses to something sensible -} CNSsolve> do (mass=refy) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=2459.974 E(kin)=749.274 temperature=310.714 | | Etotal =1710.700 grad(E)=54.216 E(BOND)=3.949 E(ANGL)=1075.610 | | E(DIHE)=78.584 E(IMPR)=452.653 E(VDW )=99.904 | ------------------------------------------------------------------------------- NBONDS: found 87439 intra-atom interactions NBONDS: found 87459 intra-atom interactions NBONDS: found 87462 intra-atom interactions NBONDS: found 87403 intra-atom interactions NBONDS: found 87403 intra-atom interactions NBONDS: found 87392 intra-atom interactions NBONDS: found 87398 intra-atom interactions NBONDS: found 87409 intra-atom interactions NBONDS: found 87424 intra-atom interactions NBONDS: found 87429 intra-atom interactions NBONDS: found 87423 intra-atom interactions NBONDS: found 87403 intra-atom interactions NBONDS: found 87396 intra-atom interactions NBONDS: found 87368 intra-atom interactions NBONDS: found 87370 intra-atom interactions NBONDS: found 87328 intra-atom interactions NBONDS: found 87379 intra-atom interactions NBONDS: found 87405 intra-atom interactions NBONDS: found 87412 intra-atom interactions NBONDS: found 87397 intra-atom interactions NBONDS: found 87389 intra-atom interactions NBONDS: found 87400 intra-atom interactions NBONDS: found 87374 intra-atom interactions NBONDS: found 87393 intra-atom interactions NBONDS: found 87403 intra-atom interactions NBONDS: found 87421 intra-atom interactions NBONDS: found 87415 intra-atom interactions NBONDS: found 87419 intra-atom interactions NBONDS: found 87399 intra-atom interactions NBONDS: found 87339 intra-atom interactions NBONDS: found 87313 intra-atom interactions NBONDS: found 87336 intra-atom interactions NBONDS: found 87365 intra-atom interactions NBONDS: found 87428 intra-atom interactions NBONDS: found 87462 intra-atom interactions NBONDS: found 87480 intra-atom interactions NBONDS: found 87486 intra-atom interactions NBONDS: found 87472 intra-atom interactions NBONDS: found 87435 intra-atom interactions NBONDS: found 87424 intra-atom interactions NBONDS: found 87409 intra-atom interactions NBONDS: found 87417 intra-atom interactions NBONDS: found 87414 intra-atom interactions NBONDS: found 87400 intra-atom interactions NBONDS: found 87410 intra-atom interactions NBONDS: found 87400 intra-atom interactions NBONDS: found 87413 intra-atom interactions NBONDS: found 87431 intra-atom interactions NBONDS: found 87429 intra-atom interactions NBONDS: found 87420 intra-atom interactions NBONDS: found 87399 intra-atom interactions NBONDS: found 87391 intra-atom interactions NBONDS: found 87402 intra-atom interactions NBONDS: found 87390 intra-atom interactions NBONDS: found 87402 intra-atom interactions NBONDS: found 87365 intra-atom interactions NBONDS: found 87362 intra-atom interactions NBONDS: found 87361 intra-atom interactions NBONDS: found 87350 intra-atom interactions NBONDS: found 87361 intra-atom interactions NBONDS: found 87379 intra-atom interactions NBONDS: found 87400 intra-atom interactions NBONDS: found 87411 intra-atom interactions NBONDS: found 87416 intra-atom interactions NBONDS: found 87424 intra-atom interactions NBONDS: found 87427 intra-atom interactions NBONDS: found 87406 intra-atom interactions NBONDS: found 87393 intra-atom interactions NBONDS: found 87375 intra-atom interactions NBONDS: found 87378 intra-atom interactions NBONDS: found 87388 intra-atom interactions NBONDS: found 87392 intra-atom interactions NBONDS: found 87407 intra-atom interactions NBONDS: found 87429 intra-atom interactions NBONDS: found 87420 intra-atom interactions NBONDS: found 87440 intra-atom interactions NBONDS: found 87431 intra-atom interactions NBONDS: found 87416 intra-atom interactions NBONDS: found 87386 intra-atom interactions NBONDS: found 87354 intra-atom interactions NBONDS: found 87354 intra-atom interactions NBONDS: found 87355 intra-atom interactions NBONDS: found 87371 intra-atom interactions NBONDS: found 87389 intra-atom interactions NBONDS: found 87418 intra-atom interactions NBONDS: found 87418 intra-atom interactions NBONDS: found 87419 intra-atom interactions NBONDS: found 87413 intra-atom interactions NBONDS: found 87419 intra-atom interactions NBONDS: found 87415 intra-atom interactions NBONDS: found 87409 intra-atom interactions NBONDS: found 87435 intra-atom interactions NBONDS: found 87457 intra-atom interactions NBONDS: found 87470 intra-atom interactions NBONDS: found 87484 intra-atom interactions NBONDS: found 87515 intra-atom interactions NBONDS: found 87513 intra-atom interactions NBONDS: found 87509 intra-atom interactions NBONDS: found 87467 intra-atom interactions NBONDS: found 87441 intra-atom interactions NBONDS: found 87434 intra-atom interactions NBONDS: found 87426 intra-atom interactions NBONDS: found 87410 intra-atom interactions NBONDS: found 87412 intra-atom interactions NBONDS: found 87411 intra-atom interactions NBONDS: found 87430 intra-atom interactions NBONDS: found 87431 intra-atom interactions NBONDS: found 87457 intra-atom interactions NBONDS: found 87443 intra-atom interactions NBONDS: found 87448 intra-atom interactions NBONDS: found 87428 intra-atom interactions NBONDS: found 87419 intra-atom interactions NBONDS: found 87417 intra-atom interactions NBONDS: found 87419 intra-atom interactions NBONDS: found 87407 intra-atom interactions NBONDS: found 87392 intra-atom interactions NBONDS: found 87393 intra-atom interactions NBONDS: found 87379 intra-atom interactions NBONDS: found 87377 intra-atom interactions NBONDS: found 87403 intra-atom interactions NBONDS: found 87415 intra-atom interactions NBONDS: found 87441 intra-atom interactions NBONDS: found 87456 intra-atom interactions NBONDS: found 87441 intra-atom interactions NBONDS: found 87424 intra-atom interactions NBONDS: found 87404 intra-atom interactions NBONDS: found 87395 intra-atom interactions NBONDS: found 87387 intra-atom interactions NBONDS: found 87388 intra-atom interactions NBONDS: found 87411 intra-atom interactions NBONDS: found 87428 intra-atom interactions NBONDS: found 87438 intra-atom interactions NBONDS: found 87451 intra-atom interactions NBONDS: found 87466 intra-atom interactions NBONDS: found 87485 intra-atom interactions NBONDS: found 87464 intra-atom interactions NBONDS: found 87446 intra-atom interactions NBONDS: found 87437 intra-atom interactions NBONDS: found 87430 intra-atom interactions NBONDS: found 87455 intra-atom interactions NBONDS: found 87465 intra-atom interactions NBONDS: found 87465 intra-atom interactions NBONDS: found 87481 intra-atom interactions NBONDS: found 87493 intra-atom interactions NBONDS: found 87472 intra-atom interactions NBONDS: found 87464 intra-atom interactions NBONDS: found 87451 intra-atom interactions NBONDS: found 87435 intra-atom interactions NBONDS: found 87463 intra-atom interactions NBONDS: found 87478 intra-atom interactions NBONDS: found 87484 intra-atom interactions NBONDS: found 87489 intra-atom interactions NBONDS: found 87489 intra-atom interactions NBONDS: found 87452 intra-atom interactions NBONDS: found 87439 intra-atom interactions NBONDS: found 87430 intra-atom interactions NBONDS: found 87435 intra-atom interactions NBONDS: found 87439 intra-atom interactions NBONDS: found 87456 intra-atom interactions NBONDS: found 87469 intra-atom interactions NBONDS: found 87469 intra-atom interactions NBONDS: found 87468 intra-atom interactions NBONDS: found 87475 intra-atom interactions NBONDS: found 87478 intra-atom interactions NBONDS: found 87504 intra-atom interactions NBONDS: found 87514 intra-atom interactions NBONDS: found 87500 intra-atom interactions NBONDS: found 87492 intra-atom interactions NBONDS: found 87484 intra-atom interactions NBONDS: found 87470 intra-atom interactions NBONDS: found 87439 intra-atom interactions NBONDS: found 87432 intra-atom interactions NBONDS: found 87431 intra-atom interactions NBONDS: found 87436 intra-atom interactions NBONDS: found 87433 intra-atom interactions NBONDS: found 87451 intra-atom interactions NBONDS: found 87456 intra-atom interactions NBONDS: found 87468 intra-atom interactions NBONDS: found 87447 intra-atom interactions NBONDS: found 87430 intra-atom interactions NBONDS: found 87422 intra-atom interactions NBONDS: found 87421 intra-atom interactions NBONDS: found 87424 intra-atom interactions NBONDS: found 87418 intra-atom interactions NBONDS: found 87427 intra-atom interactions NBONDS: found 87434 intra-atom interactions NBONDS: found 87435 intra-atom interactions NBONDS: found 87449 intra-atom interactions NBONDS: found 87459 intra-atom interactions NBONDS: found 87473 intra-atom interactions NBONDS: found 87452 intra-atom interactions NBONDS: found 87443 intra-atom interactions NBONDS: found 87463 intra-atom interactions NBONDS: found 87467 intra-atom interactions NBONDS: found 87467 intra-atom interactions NBONDS: found 87435 intra-atom interactions NBONDS: found 87426 intra-atom interactions NBONDS: found 87421 intra-atom interactions NBONDS: found 87430 intra-atom interactions NBONDS: found 87444 intra-atom interactions NBONDS: found 87446 intra-atom interactions NBONDS: found 87446 intra-atom interactions NBONDS: found 87433 intra-atom interactions NBONDS: found 87428 intra-atom interactions NBONDS: found 87439 intra-atom interactions NBONDS: found 87431 intra-atom interactions NBONDS: found 87422 intra-atom interactions NBONDS: found 87395 intra-atom interactions NBONDS: found 87410 intra-atom interactions NBONDS: found 87415 intra-atom interactions NBONDS: found 87418 intra-atom interactions NBONDS: found 87430 intra-atom interactions NBONDS: found 87449 intra-atom interactions NBONDS: found 87489 intra-atom interactions NBONDS: found 87475 intra-atom interactions NBONDS: found 87463 intra-atom interactions NBONDS: found 87459 intra-atom interactions NBONDS: found 87449 intra-atom interactions NBONDS: found 87431 intra-atom interactions NBONDS: found 87397 intra-atom interactions NBONDS: found 87405 intra-atom interactions NBONDS: found 87405 intra-atom interactions NBONDS: found 87406 intra-atom interactions NBONDS: found 87420 intra-atom interactions NBONDS: found 87417 intra-atom interactions NBONDS: found 87461 intra-atom interactions NBONDS: found 87481 intra-atom interactions NBONDS: found 87485 intra-atom interactions NBONDS: found 87490 intra-atom interactions NBONDS: found 87498 intra-atom interactions NBONDS: found 87488 intra-atom interactions NBONDS: found 87471 intra-atom interactions NBONDS: found 87418 intra-atom interactions NBONDS: found 87396 intra-atom interactions NBONDS: found 87375 intra-atom interactions NBONDS: found 87373 intra-atom interactions NBONDS: found 87423 intra-atom interactions NBONDS: found 87460 intra-atom interactions NBONDS: found 87485 intra-atom interactions NBONDS: found 87512 intra-atom interactions NBONDS: found 87522 intra-atom interactions NBONDS: found 87513 intra-atom interactions NBONDS: found 87497 intra-atom interactions NBONDS: found 87448 intra-atom interactions NBONDS: found 87418 intra-atom interactions NBONDS: found 87394 intra-atom interactions NBONDS: found 87367 intra-atom interactions NBONDS: found 87347 intra-atom interactions NBONDS: found 87338 intra-atom interactions NBONDS: found 87348 intra-atom interactions NBONDS: found 87397 intra-atom interactions NBONDS: found 87455 intra-atom interactions NBONDS: found 87498 intra-atom interactions NBONDS: found 87528 intra-atom interactions NBONDS: found 87541 intra-atom interactions NBONDS: found 87525 intra-atom interactions NBONDS: found 87478 intra-atom interactions NBONDS: found 87432 intra-atom interactions NBONDS: found 87382 intra-atom interactions NBONDS: found 87357 intra-atom interactions NBONDS: found 87341 intra-atom interactions NBONDS: found 87325 intra-atom interactions NBONDS: found 87327 intra-atom interactions NBONDS: found 87346 intra-atom interactions NBONDS: found 87392 intra-atom interactions NBONDS: found 87429 intra-atom interactions NBONDS: found 87457 intra-atom interactions NBONDS: found 87481 intra-atom interactions NBONDS: found 87494 intra-atom interactions NBONDS: found 87489 intra-atom interactions NBONDS: found 87496 intra-atom interactions NBONDS: found 87478 intra-atom interactions NBONDS: found 87441 intra-atom interactions NBONDS: found 87411 intra-atom interactions NBONDS: found 87369 intra-atom interactions NBONDS: found 87351 intra-atom interactions NBONDS: found 87337 intra-atom interactions NBONDS: found 87339 intra-atom interactions NBONDS: found 87336 intra-atom interactions NBONDS: found 87363 intra-atom interactions NBONDS: found 87397 intra-atom interactions NBONDS: found 87440 intra-atom interactions NBONDS: found 87467 intra-atom interactions NBONDS: found 87487 intra-atom interactions NBONDS: found 87512 intra-atom interactions NBONDS: found 87521 intra-atom interactions NBONDS: found 87525 intra-atom interactions NBONDS: found 87499 intra-atom interactions NBONDS: found 87460 intra-atom interactions NBONDS: found 87429 intra-atom interactions NBONDS: found 87394 intra-atom interactions NBONDS: found 87380 intra-atom interactions NBONDS: found 87376 intra-atom interactions NBONDS: found 87386 intra-atom interactions NBONDS: found 87392 intra-atom interactions NBONDS: found 87410 intra-atom interactions NBONDS: found 87439 intra-atom interactions NBONDS: found 87457 intra-atom interactions NBONDS: found 87474 intra-atom interactions NBONDS: found 87483 intra-atom interactions NBONDS: found 87500 intra-atom interactions NBONDS: found 87500 intra-atom interactions NBONDS: found 87493 intra-atom interactions NBONDS: found 87467 intra-atom interactions NBONDS: found 87427 intra-atom interactions NBONDS: found 87396 intra-atom interactions NBONDS: found 87365 intra-atom interactions NBONDS: found 87351 intra-atom interactions NBONDS: found 87343 intra-atom interactions NBONDS: found 87341 intra-atom interactions NBONDS: found 87353 intra-atom interactions NBONDS: found 87385 intra-atom interactions NBONDS: found 87408 intra-atom interactions NBONDS: found 87442 intra-atom interactions NBONDS: found 87459 intra-atom interactions NBONDS: found 87475 intra-atom interactions NBONDS: found 87500 intra-atom interactions NBONDS: found 87499 intra-atom interactions NBONDS: found 87476 intra-atom interactions NBONDS: found 87457 intra-atom interactions NBONDS: found 87434 intra-atom interactions NBONDS: found 87417 intra-atom interactions NBONDS: found 87410 intra-atom interactions NBONDS: found 87395 intra-atom interactions NBONDS: found 87382 intra-atom interactions NBONDS: found 87376 intra-atom interactions NBONDS: found 87396 intra-atom interactions NBONDS: found 87421 intra-atom interactions NBONDS: found 87442 intra-atom interactions NBONDS: found 87474 intra-atom interactions NBONDS: found 87500 intra-atom interactions NBONDS: found 87506 intra-atom interactions NBONDS: found 87495 intra-atom interactions NBONDS: found 87428 intra-atom interactions NBONDS: found 87385 intra-atom interactions NBONDS: found 87361 intra-atom interactions NBONDS: found 87339 intra-atom interactions NBONDS: found 87317 intra-atom interactions NBONDS: found 87323 intra-atom interactions NBONDS: found 87372 intra-atom interactions NBONDS: found 87405 intra-atom interactions NBONDS: found 87427 intra-atom interactions NBONDS: found 87464 intra-atom interactions NBONDS: found 87482 intra-atom interactions NBONDS: found 87505 intra-atom interactions NBONDS: found 87465 intra-atom interactions NBONDS: found 87427 intra-atom interactions NBONDS: found 87422 intra-atom interactions NBONDS: found 87412 intra-atom interactions NBONDS: found 87397 intra-atom interactions NBONDS: found 87366 intra-atom interactions NBONDS: found 87383 intra-atom interactions NBONDS: found 87394 intra-atom interactions NBONDS: found 87416 intra-atom interactions NBONDS: found 87451 intra-atom interactions NBONDS: found 87470 intra-atom interactions NBONDS: found 87512 intra-atom interactions NBONDS: found 87486 intra-atom interactions NBONDS: found 87454 intra-atom interactions NBONDS: found 87426 intra-atom interactions NBONDS: found 87395 intra-atom interactions NBONDS: found 87364 intra-atom interactions NBONDS: found 87315 intra-atom interactions NBONDS: found 87322 intra-atom interactions NBONDS: found 87342 intra-atom interactions NBONDS: found 87358 intra-atom interactions NBONDS: found 87393 intra-atom interactions NBONDS: found 87410 intra-atom interactions NBONDS: found 87431 intra-atom interactions NBONDS: found 87425 intra-atom interactions NBONDS: found 87421 intra-atom interactions NBONDS: found 87423 intra-atom interactions NBONDS: found 87415 intra-atom interactions NBONDS: found 87410 intra-atom interactions NBONDS: found 87391 intra-atom interactions NBONDS: found 87414 intra-atom interactions NBONDS: found 87425 intra-atom interactions NBONDS: found 87427 intra-atom interactions NBONDS: found 87438 intra-atom interactions NBONDS: found 87437 intra-atom interactions NBONDS: found 87431 intra-atom interactions NBONDS: found 87415 intra-atom interactions NBONDS: found 87416 intra-atom interactions NBONDS: found 87423 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=25911.690 E(kin)=16451.922 temperature=6822.401 | | Etotal =9459.768 grad(E)=154.973 E(BOND)=4264.428 E(ANGL)=2098.853 | | E(DIHE)=6.175 E(IMPR)=2964.498 E(VDW )=125.814 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 1.43710 -27.00448 0.35039 velocity [A/ps] : 2.50614 2.92813 2.71610 ang. mom. [amu A/ps] : 7485.33833 -8444.09343 -24157.09606 kin. ener. [Kcal/mol] : 22.46178 CNSsolve> CNSsolve> {- some final minimisation -} CNSsolve> minimize powell POWELL> nstep=500 POWELL> drop=40.0 POWELL> nprint=50 POWELL> end POWELL: number of degrees of freedom= 2427 NBONDS: found 87415 intra-atom interactions NBONDS: found 87412 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =2206.356 grad(E)=52.629 E(BOND)=18.045 E(ANGL)=803.529 | | E(DIHE)=6.165 E(IMPR)=1309.234 E(VDW )=69.382 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> print thres=0.02 bonds (atom-i |atom-j ) dist. equil. delta energy const. ( 13 NE | 13 HE ) 1.093 0.980 0.113 12.726 1000.000 ( 44 NE | 44 HE ) 1.021 0.980 0.041 1.682 1000.000 ( 75 NE | 75 HE ) 0.933 0.980 -0.047 2.230 1000.000 Number of violations greater 0.020: 3 RMS deviation= 0.005 CNSsolve> print thres=5. angles (atom-i |atom-j |atom-k ) angle equil. delta energy const. ( 13 CD | 13 NE | 13 HE ) 96.507 118.099 -21.592 71.009 500.000 ( 13 HE | 13 NE | 13 CZ ) 139.088 119.249 19.840 59.950 500.000 ( 44 CD | 44 NE | 44 HE ) 74.616 118.099 -43.483 287.975 500.000 ( 44 HE | 44 NE | 44 CZ ) 131.857 119.249 12.608 24.212 500.000 ( 75 CD | 75 NE | 75 HE ) 79.709 118.099 -38.390 224.470 500.000 ( 75 HE | 75 NE | 75 CZ ) 133.021 119.249 13.772 28.889 500.000 Number of violations greater 5.000: 6 RMS deviation= 1.686 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> fix selection=( none ) end SELRPN: 0 atoms have been selected out of 1586 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 0 atoms have been selected out of 1586 SHOW: zero atoms selected NEXTCD: condition evaluated as true SELRPN: 0 atoms have been selected out of 1586 CNSsolve> CNSsolve> if (&set_bfactor=true) then NEXTCD: condition evaluated as false CNSsolve> do (b=&bfactor) ( all ) CNSsolve> else CNSsolve> show ave(b) (known and not(store1)) SELRPN: 777 atoms have been selected out of 1586 SHOW: average of selected elements = 0.000000 CNSsolve> do (b=$result) (store1 and (attr b < 0.01)) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> end if CNSsolve> CNSsolve> if (&set_occupancy=true) then NEXTCD: condition evaluated as false CNSsolve> do (q=&occupancy) ( all ) CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 809 atoms have been selected out of 1586 SHOW: sum over selected elements = 809.000000 NEXTCD: condition evaluated as false CNSsolve> CNSsolve> set remarks=reset end CNSsolve> CNSsolve> buffer message BUFFER> to=remarks BUFFER> dump BUFFER> end CNSsolve> CNSsolve> write coordinates output=&coordinate_outfile end ASSFIL: file 1xxx_11_cns.pdb opened. CNSsolve> CNSsolve>stop ============================================================ Maximum dynamic memory allocation: 980484 bytes Maximum dynamic memory overhead: 864 bytes Program started at: 08:38:57 on 12-Jan-04 Program stopped at: 08:39:20 on 12-Jan-04 CPU time used: 22.7700 seconds ============================================================