============================================================ | | | Crystallography & NMR System (CNS) | | CNSsolve | | | ============================================================ Version: 1.1 Status: General release ============================================================ Written by: A.T.Brunger, P.D.Adams, G.M.Clore, W.L.DeLano, P.Gros, R.W.Grosse-Kunstleve, J.-S.Jiang, J.Kuszewski, M.Nilges, N.S.Pannu, R.J.Read, L.M.Rice, T.Simonson, G.L.Warren. Copyright (c) 1997-2001 Yale University ============================================================ Running on machine: cesg-master.biochem.wisc.edu (Linux,32-bit) Program started by: lytle Program started at: 08:42:20 on 12-Jan-04 ============================================================ FFT3C: Using FFTPACK4.1 CNSsolve>define( DEFINE>{* selection of atoms other than hydrogens for which coordinates DEFINE> will be generated *} DEFINE>{* to generate coordinates for all unknown atoms use: (not(known)) *} DEFINE>{===>} atom_build=(not(known)); DEFINE>{============================= output files ================================} DEFINE> DEFINE>{* input coordinate file *} DEFINE>{===>} coordinate_infile="1xxx_1.pdb"; DEFINE> DEFINE>{* output coordinate file *} DEFINE>{===>} coordinate_outfile="1xxx_1_cns.pdb"; DEFINE>) CNSsolve> CNSsolve> checkversion 1.1 Program version= 1.1 File version= 1.1 CNSsolve> CNSsolve> evaluate ($log_level=verbose) Assuming literal string "VERBOSE" EVALUATE: symbol $LOG_LEVEL set to "VERBOSE" (string) CNSsolve> evaluate ($par_nonbonded="PROLSQ") EVALUATE: symbol $PAR_NONBONDED set to "PROLSQ" (string) CNSsolve> CNSsolve> !@generateProtonsJFD.inp CNSsolve> CNSsolve>{===========================================================================} CNSsolve>{ things below this line do not need to be changed } CNSsolve>{===========================================================================} CNSsolve> CNSsolve>remarks changed Tue Sep 2 09:48:07 CDT 2003 CNSsolve>remarks by jfd to include a fes residue CNSsolve> CNSsolve>!@generate_tmoc.inp CNSsolve> CNSsolve>topology reset end CNSsolve>structure reset end Status of internal molecular topology database: -> NATOM= 0(MAXA= 40000) NBOND= 0(MAXB= 40000) -> NTHETA= 0(MAXT= 80000) NGRP= 0(MAXGRP= 40000) -> NPHI= 0(MAXP= 80000) NIMPHI= 0(MAXIMP= 40000) -> NNB= 0(MAXNB= 40000) CNSsolve> CNSsolve>topology RTFRDR>{===>} @TOPPAR:topallhdg5.3.pro ASSFIL: file /u/volkman/waterrefine/toppar/topallhdg5.3.pro opened. RTFRDR>remark file topallhdg.pro version 5.3 date 23-Sept-02 RTFRDR>remark for file parallhdg.pro version 5.3 date 13-Feb-02 or later RTFRDR>remark Geometric energy function parameters for distance geometry and RTFRDR>remark simulated annealing. RTFRDR>remark Author: Michael Nilges, EMBL Heidelberg; Institut Pasteur, Paris RTFRDR>remark This file contains modifications from M. Williams, UCL London RTFRDR>remark Last modification 16-Sept-02 RTFRDR> RTFRDR>set echo off message off end RTFRDR>end CNSsolve> CNSsolve>! no chain id. CNSsolve>segment name=" " SEGMENT> chain CHAIN> @TOPPAR:topallhdg5.3.pep CHAIN>REMARKS TOPH19.pep -MACRO for protein sequence CHAIN>SET ECHO=FALSE END CHAIN> sequence SEQUENCE> @1xxx.seq SEQUENCE>GLU SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) = end SEGMNT: 101 residues were inserted into segment " " CHAIN> end SEGMENT>end Status of internal molecular topology database: -> NATOM= 1586(MAXA= 40000) NBOND= 1598(MAXB= 40000) -> NTHETA= 2925(MAXT= 80000) NGRP= 103(MAXGRP= 40000) -> NPHI= 2500(MAXP= 80000) NIMPHI= 774(MAXIMP= 40000) -> NNB= 618(MAXNB= 40000) CNSsolve> CNSsolve>! turn peptide from trans to cis CNSsolve>!patch CISP reference=nil=( resid 80 ) end CNSsolve> CNSsolve>coor @&coordinate_infile COOR>HEADER Structures from CYANA 11-01-2004 COOR>REMARK model 1 COOR>ATOM 1 N GLU A 1 1.325 0.000 0.000 1.00 0.00 %READC-ERR: atom 1 GLU HN not found in molecular structure %READC-ERR: atom 1 GLU 2HB not found in molecular structure %READC-ERR: atom 1 GLU 3HB not found in molecular structure %READC-ERR: atom 1 GLU QB not found in molecular structure %READC-ERR: atom 1 GLU 2HG not found in molecular structure %READC-ERR: atom 1 GLU 3HG not found in molecular structure %READC-ERR: atom 1 GLU QG not found in molecular structure %READC-ERR: atom 2 ALA QB not found in molecular structure %READC-ERR: atom 2 ALA 1HB not found in molecular structure %READC-ERR: atom 2 ALA 2HB not found in molecular structure %READC-ERR: atom 2 ALA 3HB not found in molecular structure %READC-ERR: atom 3 GLU 2HB not found in molecular structure %READC-ERR: atom 3 GLU 3HB not found in molecular structure %READC-ERR: atom 3 GLU QB not found in molecular structure %READC-ERR: atom 3 GLU 2HG not found in molecular structure %READC-ERR: atom 3 GLU 3HG not found in molecular structure %READC-ERR: atom 3 GLU QG not found in molecular structure %READC-ERR: atom 4 VAL QG1 not found in molecular structure %READC-ERR: atom 4 VAL QG2 not found in molecular structure %READC-ERR: atom 4 VAL 1HG1 not found in molecular structure %READC-ERR: atom 4 VAL 2HG1 not found in molecular structure %READC-ERR: atom 4 VAL 3HG1 not found in molecular structure %READC-ERR: atom 4 VAL 1HG2 not found in molecular structure %READC-ERR: atom 4 VAL 2HG2 not found in molecular structure %READC-ERR: atom 4 VAL 3HG2 not found in molecular structure %READC-ERR: atom 4 VAL QQG not found in molecular structure %READC-ERR: atom 5 HIS 2HB not found in molecular structure %READC-ERR: atom 5 HIS 3HB not found in molecular structure %READC-ERR: atom 5 HIS QB not found in molecular structure %READC-ERR: atom 6 ASN 2HB not found in molecular structure %READC-ERR: atom 6 ASN 3HB not found in molecular structure %READC-ERR: atom 6 ASN QB not found in molecular structure %READC-ERR: atom 6 ASN 1HD2 not found in molecular structure %READC-ERR: atom 6 ASN 2HD2 not found in molecular structure %READC-ERR: atom 6 ASN QD2 not found in molecular structure %READC-ERR: atom 7 GLN 2HB not found in molecular structure %READC-ERR: atom 7 GLN 3HB not found in molecular structure %READC-ERR: atom 7 GLN QB not found in molecular structure %READC-ERR: atom 7 GLN 2HG not found in molecular structure %READC-ERR: atom 7 GLN 3HG not found in molecular structure %READC-ERR: atom 7 GLN QG not found in molecular structure %READC-ERR: atom 7 GLN 1HE2 not found in molecular structure %READC-ERR: atom 7 GLN 2HE2 not found in molecular structure %READC-ERR: atom 7 GLN QE2 not found in molecular structure %READC-ERR: atom 8 LEU 2HB not found in molecular structure %READC-ERR: atom 8 LEU 3HB not found in molecular structure %READC-ERR: atom 8 LEU QB not found in molecular structure %READC-ERR: atom 8 LEU QD1 not found in molecular structure %READC-ERR: atom 8 LEU QD2 not found in molecular structure %READC-ERR: atom 8 LEU 1HD1 not found in molecular structure %READC-ERR: atom 8 LEU 2HD1 not found in molecular structure %READC-ERR: atom 8 LEU 3HD1 not found in molecular structure %READC-ERR: atom 8 LEU 1HD2 not found in molecular structure %READC-ERR: atom 8 LEU 2HD2 not found in molecular structure %READC-ERR: atom 8 LEU 3HD2 not found in molecular structure %READC-ERR: atom 8 LEU QQD not found in molecular structure %READC-ERR: atom 9 GLU 2HB not found in molecular structure %READC-ERR: atom 9 GLU 3HB not found in molecular structure %READC-ERR: atom 9 GLU QB not found in molecular structure %READC-ERR: atom 9 GLU 2HG not found in molecular structure %READC-ERR: atom 9 GLU 3HG not found in molecular structure %READC-ERR: atom 9 GLU QG not found in molecular structure %READC-ERR: atom 10 ILE QG2 not found in molecular structure %READC-ERR: atom 10 ILE 1HG2 not found in molecular structure %READC-ERR: atom 10 ILE 2HG2 not found in molecular structure %READC-ERR: atom 10 ILE 3HG2 not found in molecular structure %READC-ERR: atom 10 ILE 2HG1 not found in molecular structure %READC-ERR: atom 10 ILE 3HG1 not found in molecular structure %READC-ERR: atom 10 ILE QG1 not found in molecular structure %READC-ERR: atom 10 ILE QD1 not found in molecular structure %READC-ERR: atom 10 ILE 1HD1 not found in molecular structure %READC-ERR: atom 10 ILE 2HD1 not found in molecular structure %READC-ERR: atom 10 ILE 3HD1 not found in molecular structure %READC-ERR: atom 11 LYS 2HB not found in molecular structure %READC-ERR: atom 11 LYS 3HB not found in molecular structure %READC-ERR: atom 11 LYS QB not found in molecular structure %READC-ERR: atom 11 LYS 2HG not found in molecular structure %READC-ERR: atom 11 LYS 3HG not found in molecular structure %READC-ERR: atom 11 LYS QG not found in molecular structure %READC-ERR: atom 11 LYS 2HD not found in molecular structure %READC-ERR: atom 11 LYS 3HD not found in molecular structure %READC-ERR: atom 11 LYS QD not found in molecular structure %READC-ERR: atom 11 LYS 2HE not found in molecular structure %READC-ERR: atom 11 LYS 3HE not found in molecular structure %READC-ERR: atom 11 LYS QE not found in molecular structure %READC-ERR: atom 11 LYS 1HZ not found in molecular structure %READC-ERR: atom 11 LYS 2HZ not found in molecular structure %READC-ERR: atom 11 LYS 3HZ not found in molecular structure %READC-ERR: atom 11 LYS QZ not found in molecular structure %READC-ERR: atom 12 PHE 2HB not found in molecular structure %READC-ERR: atom 12 PHE 3HB not found in molecular structure %READC-ERR: atom 12 PHE QB not found in molecular structure %READC-ERR: atom 12 PHE QD not found in molecular structure %READC-ERR: atom 12 PHE QE not found in molecular structure %READC-ERR: atom 12 PHE QR not found in molecular structure %READC-ERR: atom 13 ARG 2HB not found in molecular structure %READC-ERR: atom 13 ARG 3HB not found in molecular structure %READC-ERR: atom 13 ARG QB not found in molecular structure %READC-ERR: atom 13 ARG 2HG not found in molecular structure %READC-ERR: atom 13 ARG 3HG not found in molecular structure %READC-ERR: atom 13 ARG QG not found in molecular structure %READC-ERR: atom 13 ARG 2HD not found in molecular structure %READC-ERR: atom 13 ARG 3HD not found in molecular structure %READC-ERR: atom 13 ARG QD not found in molecular structure %READC-ERR: atom 13 ARG 1HH1 not found in molecular structure %READC-ERR: atom 13 ARG 2HH1 not found in molecular structure %READC-ERR: atom 13 ARG QH1 not found in molecular structure %READC-ERR: atom 13 ARG 1HH2 not found in molecular structure %READC-ERR: atom 13 ARG 2HH2 not found in molecular structure %READC-ERR: atom 13 ARG QH2 not found in molecular structure %READC-ERR: atom 14 LEU 2HB not found in molecular structure %READC-ERR: atom 14 LEU 3HB not found in molecular structure %READC-ERR: atom 14 LEU QB not found in molecular structure %READC-ERR: atom 14 LEU QD1 not found in molecular structure %READC-ERR: atom 14 LEU QD2 not found in molecular structure %READC-ERR: atom 14 LEU 1HD1 not found in molecular structure %READC-ERR: atom 14 LEU 2HD1 not found in molecular structure %READC-ERR: atom 14 LEU 3HD1 not found in molecular structure %READC-ERR: atom 14 LEU 1HD2 not found in molecular structure %READC-ERR: atom 14 LEU 2HD2 not found in molecular structure %READC-ERR: atom 14 LEU 3HD2 not found in molecular structure %READC-ERR: atom 14 LEU QQD not found in molecular structure %READC-ERR: atom 15 THR QG2 not found in molecular structure %READC-ERR: atom 15 THR 1HG2 not found in molecular structure %READC-ERR: atom 15 THR 2HG2 not found in molecular structure %READC-ERR: atom 15 THR 3HG2 not found in molecular structure %READC-ERR: atom 16 ASP 2HB not found in molecular structure %READC-ERR: atom 16 ASP 3HB not found in molecular structure %READC-ERR: atom 16 ASP QB not found in molecular structure %READC-ERR: atom 17 GLY 1HA not found in molecular structure %READC-ERR: atom 17 GLY 2HA not found in molecular structure %READC-ERR: atom 17 GLY QA not found in molecular structure %READC-ERR: atom 18 SER 2HB not found in molecular structure %READC-ERR: atom 18 SER 3HB not found in molecular structure %READC-ERR: atom 18 SER QB not found in molecular structure %READC-ERR: atom 19 ASP 2HB not found in molecular structure %READC-ERR: atom 19 ASP 3HB not found in molecular structure %READC-ERR: atom 19 ASP QB not found in molecular structure %READC-ERR: atom 20 ILE QG2 not found in molecular structure %READC-ERR: atom 20 ILE 1HG2 not found in molecular structure %READC-ERR: atom 20 ILE 2HG2 not found in molecular structure %READC-ERR: atom 20 ILE 3HG2 not found in molecular structure %READC-ERR: atom 20 ILE 2HG1 not found in molecular structure %READC-ERR: atom 20 ILE 3HG1 not found in molecular structure %READC-ERR: atom 20 ILE QG1 not found in molecular structure %READC-ERR: atom 20 ILE QD1 not found in molecular structure %READC-ERR: atom 20 ILE 1HD1 not found in molecular structure %READC-ERR: atom 20 ILE 2HD1 not found in molecular structure %READC-ERR: atom 20 ILE 3HD1 not found in molecular structure %READC-ERR: atom 21 GLY 1HA not found in molecular structure %READC-ERR: atom 21 GLY 2HA not found in molecular structure %READC-ERR: atom 21 GLY QA not found in molecular structure %READC-ERR: atom 22 PRO 2HB not found in molecular structure %READC-ERR: atom 22 PRO 3HB not found in molecular structure %READC-ERR: atom 22 PRO QB not found in molecular structure %READC-ERR: atom 22 PRO 2HG not found in molecular structure %READC-ERR: atom 22 PRO 3HG not found in molecular structure %READC-ERR: atom 22 PRO QG not found in molecular structure %READC-ERR: atom 22 PRO 2HD not found in molecular structure %READC-ERR: atom 22 PRO 3HD not found in molecular structure %READC-ERR: atom 22 PRO QD not found in molecular structure %READC-ERR: atom 23 LYS 2HB not found in molecular structure %READC-ERR: atom 23 LYS 3HB not found in molecular structure %READC-ERR: atom 23 LYS QB not found in molecular structure %READC-ERR: atom 23 LYS 2HG not found in molecular structure %READC-ERR: atom 23 LYS 3HG not found in molecular structure %READC-ERR: atom 23 LYS QG not found in molecular structure %READC-ERR: atom 23 LYS 2HD not found in molecular structure %READC-ERR: atom 23 LYS 3HD not found in molecular structure %READC-ERR: atom 23 LYS QD not found in molecular structure %READC-ERR: atom 23 LYS 2HE not found in molecular structure %READC-ERR: atom 23 LYS 3HE not found in molecular structure %READC-ERR: atom 23 LYS QE not found in molecular structure %READC-ERR: atom 23 LYS 1HZ not found in molecular structure %READC-ERR: atom 23 LYS 2HZ not found in molecular structure %READC-ERR: atom 23 LYS 3HZ not found in molecular structure %READC-ERR: atom 23 LYS QZ not found in molecular structure %READC-ERR: atom 24 ALA QB not found in molecular structure %READC-ERR: atom 24 ALA 1HB not found in molecular structure %READC-ERR: atom 24 ALA 2HB not found in molecular structure %READC-ERR: atom 24 ALA 3HB not found in molecular structure %READC-ERR: atom 25 PHE 2HB not found in molecular structure %READC-ERR: atom 25 PHE 3HB not found in molecular structure %READC-ERR: atom 25 PHE QB not found in molecular structure %READC-ERR: atom 25 PHE QD not found in molecular structure %READC-ERR: atom 25 PHE QE not found in molecular structure %READC-ERR: atom 25 PHE QR not found in molecular structure %READC-ERR: atom 26 PRO 2HB not found in molecular structure %READC-ERR: atom 26 PRO 3HB not found in molecular structure %READC-ERR: atom 26 PRO QB not found in molecular structure %READC-ERR: atom 26 PRO 2HG not found in molecular structure %READC-ERR: atom 26 PRO 3HG not found in molecular structure %READC-ERR: atom 26 PRO QG not found in molecular structure %READC-ERR: atom 26 PRO 2HD not found in molecular structure %READC-ERR: atom 26 PRO 3HD not found in molecular structure %READC-ERR: atom 26 PRO QD not found in molecular structure %READC-ERR: atom 27 ASP 2HB not found in molecular structure %READC-ERR: atom 27 ASP 3HB not found in molecular structure %READC-ERR: atom 27 ASP QB not found in molecular structure %READC-ERR: atom 28 ALA QB not found in molecular structure %READC-ERR: atom 28 ALA 1HB not found in molecular structure %READC-ERR: atom 28 ALA 2HB not found in molecular structure %READC-ERR: atom 28 ALA 3HB not found in molecular structure %READC-ERR: atom 29 THR QG2 not found in molecular structure %READC-ERR: atom 29 THR 1HG2 not found in molecular structure %READC-ERR: atom 29 THR 2HG2 not found in molecular structure %READC-ERR: atom 29 THR 3HG2 not found in molecular structure %READC-ERR: atom 30 THR QG2 not found in molecular structure %READC-ERR: atom 30 THR 1HG2 not found in molecular structure %READC-ERR: atom 30 THR 2HG2 not found in molecular structure %READC-ERR: atom 30 THR 3HG2 not found in molecular structure %READC-ERR: atom 31 VAL QG1 not found in molecular structure %READC-ERR: atom 31 VAL QG2 not found in molecular structure %READC-ERR: atom 31 VAL 1HG1 not found in molecular structure %READC-ERR: atom 31 VAL 2HG1 not found in molecular structure %READC-ERR: atom 31 VAL 3HG1 not found in molecular structure %READC-ERR: atom 31 VAL 1HG2 not found in molecular structure %READC-ERR: atom 31 VAL 2HG2 not found in molecular structure %READC-ERR: atom 31 VAL 3HG2 not found in molecular structure %READC-ERR: atom 31 VAL QQG not found in molecular structure %READC-ERR: atom 32 SER 2HB not found in molecular structure %READC-ERR: atom 32 SER 3HB not found in molecular structure %READC-ERR: atom 32 SER QB not found in molecular structure %READC-ERR: atom 33 ALA QB not found in molecular structure %READC-ERR: atom 33 ALA 1HB not found in molecular structure %READC-ERR: atom 33 ALA 2HB not found in molecular structure %READC-ERR: atom 33 ALA 3HB not found in molecular structure %READC-ERR: atom 34 LEU 2HB not found in molecular structure %READC-ERR: atom 34 LEU 3HB not found in molecular structure %READC-ERR: atom 34 LEU QB not found in molecular structure %READC-ERR: atom 34 LEU QD1 not found in molecular structure %READC-ERR: atom 34 LEU QD2 not found in molecular structure %READC-ERR: atom 34 LEU 1HD1 not found in molecular structure %READC-ERR: atom 34 LEU 2HD1 not found in molecular structure %READC-ERR: atom 34 LEU 3HD1 not found in molecular structure %READC-ERR: atom 34 LEU 1HD2 not found in molecular structure %READC-ERR: atom 34 LEU 2HD2 not found in molecular structure %READC-ERR: atom 34 LEU 3HD2 not found in molecular structure %READC-ERR: atom 34 LEU QQD not found in molecular structure %READC-ERR: atom 35 LYS 2HB not found in molecular structure %READC-ERR: atom 35 LYS 3HB not found in molecular structure %READC-ERR: atom 35 LYS QB not found in molecular structure %READC-ERR: atom 35 LYS 2HG not found in molecular structure %READC-ERR: atom 35 LYS 3HG not found in molecular structure %READC-ERR: atom 35 LYS QG not found in molecular structure %READC-ERR: atom 35 LYS 2HD not found in molecular structure %READC-ERR: atom 35 LYS 3HD not found in molecular structure %READC-ERR: atom 35 LYS QD not found in molecular structure %READC-ERR: atom 35 LYS 2HE not found in molecular structure %READC-ERR: atom 35 LYS 3HE not found in molecular structure %READC-ERR: atom 35 LYS QE not found in molecular structure %READC-ERR: atom 35 LYS 1HZ not found in molecular structure %READC-ERR: atom 35 LYS 2HZ not found in molecular structure %READC-ERR: atom 35 LYS 3HZ not found in molecular structure %READC-ERR: atom 35 LYS QZ not found in molecular structure %READC-ERR: atom 36 GLU 2HB not found in molecular structure %READC-ERR: atom 36 GLU 3HB not found in molecular structure %READC-ERR: atom 36 GLU QB not found in molecular structure %READC-ERR: atom 36 GLU 2HG not found in molecular structure %READC-ERR: atom 36 GLU 3HG not found in molecular structure %READC-ERR: atom 36 GLU QG not found in molecular structure %READC-ERR: atom 37 THR QG2 not found in molecular structure %READC-ERR: atom 37 THR 1HG2 not found in molecular structure %READC-ERR: atom 37 THR 2HG2 not found in molecular structure %READC-ERR: atom 37 THR 3HG2 not found in molecular structure %READC-ERR: atom 38 VAL QG1 not found in molecular structure %READC-ERR: atom 38 VAL QG2 not found in molecular structure %READC-ERR: atom 38 VAL 1HG1 not found in molecular structure %READC-ERR: atom 38 VAL 2HG1 not found in molecular structure %READC-ERR: atom 38 VAL 3HG1 not found in molecular structure %READC-ERR: atom 38 VAL 1HG2 not found in molecular structure %READC-ERR: atom 38 VAL 2HG2 not found in molecular structure %READC-ERR: atom 38 VAL 3HG2 not found in molecular structure %READC-ERR: atom 38 VAL QQG not found in molecular structure %READC-ERR: atom 39 ILE QG2 not found in molecular structure %READC-ERR: atom 39 ILE 1HG2 not found in molecular structure %READC-ERR: atom 39 ILE 2HG2 not found in molecular structure %READC-ERR: atom 39 ILE 3HG2 not found in molecular structure %READC-ERR: atom 39 ILE 2HG1 not found in molecular structure %READC-ERR: atom 39 ILE 3HG1 not found in molecular structure %READC-ERR: atom 39 ILE QG1 not found in molecular structure %READC-ERR: atom 39 ILE QD1 not found in molecular structure %READC-ERR: atom 39 ILE 1HD1 not found in molecular structure %READC-ERR: atom 39 ILE 2HD1 not found in molecular structure %READC-ERR: atom 39 ILE 3HD1 not found in molecular structure %READC-ERR: atom 40 SER 2HB not found in molecular structure %READC-ERR: atom 40 SER 3HB not found in molecular structure %READC-ERR: atom 40 SER QB not found in molecular structure %READC-ERR: atom 41 GLU 2HB not found in molecular structure %READC-ERR: atom 41 GLU 3HB not found in molecular structure %READC-ERR: atom 41 GLU QB not found in molecular structure %READC-ERR: atom 41 GLU 2HG not found in molecular structure %READC-ERR: atom 41 GLU 3HG not found in molecular structure %READC-ERR: atom 41 GLU QG not found in molecular structure %READC-ERR: atom 42 TRP 2HB not found in molecular structure %READC-ERR: atom 42 TRP 3HB not found in molecular structure %READC-ERR: atom 42 TRP QB not found in molecular structure %READC-ERR: atom 43 PRO 2HB not found in molecular structure %READC-ERR: atom 43 PRO 3HB not found in molecular structure %READC-ERR: atom 43 PRO QB not found in molecular structure %READC-ERR: atom 43 PRO 2HG not found in molecular structure %READC-ERR: atom 43 PRO 3HG not found in molecular structure %READC-ERR: atom 43 PRO QG not found in molecular structure %READC-ERR: atom 43 PRO 2HD not found in molecular structure %READC-ERR: atom 43 PRO 3HD not found in molecular structure %READC-ERR: atom 43 PRO QD not found in molecular structure %READC-ERR: atom 44 ARG 2HB not found in molecular structure %READC-ERR: atom 44 ARG 3HB not found in molecular structure %READC-ERR: atom 44 ARG QB not found in molecular structure %READC-ERR: atom 44 ARG 2HG not found in molecular structure %READC-ERR: atom 44 ARG 3HG not found in molecular structure %READC-ERR: atom 44 ARG QG not found in molecular structure %READC-ERR: atom 44 ARG 2HD not found in molecular structure %READC-ERR: atom 44 ARG 3HD not found in molecular structure %READC-ERR: atom 44 ARG QD not found in molecular structure %READC-ERR: atom 44 ARG 1HH1 not found in molecular structure %READC-ERR: atom 44 ARG 2HH1 not found in molecular structure %READC-ERR: atom 44 ARG QH1 not found in molecular structure %READC-ERR: atom 44 ARG 1HH2 not found in molecular structure %READC-ERR: atom 44 ARG 2HH2 not found in molecular structure %READC-ERR: atom 44 ARG QH2 not found in molecular structure %READC-ERR: atom 45 GLU 2HB not found in molecular structure %READC-ERR: atom 45 GLU 3HB not found in molecular structure %READC-ERR: atom 45 GLU QB not found in molecular structure %READC-ERR: atom 45 GLU 2HG not found in molecular structure %READC-ERR: atom 45 GLU 3HG not found in molecular structure %READC-ERR: atom 45 GLU QG not found in molecular structure %READC-ERR: atom 46 LYS 2HB not found in molecular structure %READC-ERR: atom 46 LYS 3HB not found in molecular structure %READC-ERR: atom 46 LYS QB not found in molecular structure %READC-ERR: atom 46 LYS 2HG not found in molecular structure %READC-ERR: atom 46 LYS 3HG not found in molecular structure %READC-ERR: atom 46 LYS QG not found in molecular structure %READC-ERR: atom 46 LYS 2HD not found in molecular structure %READC-ERR: atom 46 LYS 3HD not found in molecular structure %READC-ERR: atom 46 LYS QD not found in molecular structure %READC-ERR: atom 46 LYS 2HE not found in molecular structure %READC-ERR: atom 46 LYS 3HE not found in molecular structure %READC-ERR: atom 46 LYS QE not found in molecular structure %READC-ERR: atom 46 LYS 1HZ not found in molecular structure %READC-ERR: atom 46 LYS 2HZ not found in molecular structure %READC-ERR: atom 46 LYS 3HZ not found in molecular structure %READC-ERR: atom 46 LYS QZ not found in molecular structure %READC-ERR: atom 47 GLU 2HB not found in molecular structure %READC-ERR: atom 47 GLU 3HB not found in molecular structure %READC-ERR: atom 47 GLU QB not found in molecular structure %READC-ERR: atom 47 GLU 2HG not found in molecular structure %READC-ERR: atom 47 GLU 3HG not found in molecular structure %READC-ERR: atom 47 GLU QG not found in molecular structure %READC-ERR: atom 48 ASN 2HB not found in molecular structure %READC-ERR: atom 48 ASN 3HB not found in molecular structure %READC-ERR: atom 48 ASN QB not found in molecular structure %READC-ERR: atom 48 ASN 1HD2 not found in molecular structure %READC-ERR: atom 48 ASN 2HD2 not found in molecular structure %READC-ERR: atom 48 ASN QD2 not found in molecular structure %READC-ERR: atom 49 GLY 1HA not found in molecular structure %READC-ERR: atom 49 GLY 2HA not found in molecular structure %READC-ERR: atom 49 GLY QA not found in molecular structure %READC-ERR: atom 50 PRO 2HB not found in molecular structure %READC-ERR: atom 50 PRO 3HB not found in molecular structure %READC-ERR: atom 50 PRO QB not found in molecular structure %READC-ERR: atom 50 PRO 2HG not found in molecular structure %READC-ERR: atom 50 PRO 3HG not found in molecular structure %READC-ERR: atom 50 PRO QG not found in molecular structure %READC-ERR: atom 50 PRO 2HD not found in molecular structure %READC-ERR: atom 50 PRO 3HD not found in molecular structure %READC-ERR: atom 50 PRO QD not found in molecular structure %READC-ERR: atom 51 LYS 2HB not found in molecular structure %READC-ERR: atom 51 LYS 3HB not found in molecular structure %READC-ERR: atom 51 LYS QB not found in molecular structure %READC-ERR: atom 51 LYS 2HG not found in molecular structure %READC-ERR: atom 51 LYS 3HG not found in molecular structure %READC-ERR: atom 51 LYS QG not found in molecular structure %READC-ERR: atom 51 LYS 2HD not found in molecular structure %READC-ERR: atom 51 LYS 3HD not found in molecular structure %READC-ERR: atom 51 LYS QD not found in molecular structure %READC-ERR: atom 51 LYS 2HE not found in molecular structure %READC-ERR: atom 51 LYS 3HE not found in molecular structure %READC-ERR: atom 51 LYS QE not found in molecular structure %READC-ERR: atom 51 LYS 1HZ not found in molecular structure %READC-ERR: atom 51 LYS 2HZ not found in molecular structure %READC-ERR: atom 51 LYS 3HZ not found in molecular structure %READC-ERR: atom 51 LYS QZ not found in molecular structure %READC-ERR: atom 52 THR QG2 not found in molecular structure %READC-ERR: atom 52 THR 1HG2 not found in molecular structure %READC-ERR: atom 52 THR 2HG2 not found in molecular structure %READC-ERR: atom 52 THR 3HG2 not found in molecular structure %READC-ERR: atom 53 VAL QG1 not found in molecular structure %READC-ERR: atom 53 VAL QG2 not found in molecular structure %READC-ERR: atom 53 VAL 1HG1 not found in molecular structure %READC-ERR: atom 53 VAL 2HG1 not found in molecular structure %READC-ERR: atom 53 VAL 3HG1 not found in molecular structure %READC-ERR: atom 53 VAL 1HG2 not found in molecular structure %READC-ERR: atom 53 VAL 2HG2 not found in molecular structure %READC-ERR: atom 53 VAL 3HG2 not found in molecular structure %READC-ERR: atom 53 VAL QQG not found in molecular structure %READC-ERR: atom 54 LYS 2HB not found in molecular structure %READC-ERR: atom 54 LYS 3HB not found in molecular structure %READC-ERR: atom 54 LYS QB not found in molecular structure %READC-ERR: atom 54 LYS 2HG not found in molecular structure %READC-ERR: atom 54 LYS 3HG not found in molecular structure %READC-ERR: atom 54 LYS QG not found in molecular structure %READC-ERR: atom 54 LYS 2HD not found in molecular structure %READC-ERR: atom 54 LYS 3HD not found in molecular structure %READC-ERR: atom 54 LYS QD not found in molecular structure %READC-ERR: atom 54 LYS 2HE not found in molecular structure %READC-ERR: atom 54 LYS 3HE not found in molecular structure %READC-ERR: atom 54 LYS QE not found in molecular structure %READC-ERR: atom 54 LYS 1HZ not found in molecular structure %READC-ERR: atom 54 LYS 2HZ not found in molecular structure %READC-ERR: atom 54 LYS 3HZ not found in molecular structure %READC-ERR: atom 54 LYS QZ not found in molecular structure %READC-ERR: atom 55 GLU 2HB not found in molecular structure %READC-ERR: atom 55 GLU 3HB not found in molecular structure %READC-ERR: atom 55 GLU QB not found in molecular structure %READC-ERR: atom 55 GLU 2HG not found in molecular structure %READC-ERR: atom 55 GLU 3HG not found in molecular structure %READC-ERR: atom 55 GLU QG not found in molecular structure %READC-ERR: atom 56 VAL QG1 not found in molecular structure %READC-ERR: atom 56 VAL QG2 not found in molecular structure %READC-ERR: atom 56 VAL 1HG1 not found in molecular structure %READC-ERR: atom 56 VAL 2HG1 not found in molecular structure %READC-ERR: atom 56 VAL 3HG1 not found in molecular structure %READC-ERR: atom 56 VAL 1HG2 not found in molecular structure %READC-ERR: atom 56 VAL 2HG2 not found in molecular structure %READC-ERR: atom 56 VAL 3HG2 not found in molecular structure %READC-ERR: atom 56 VAL QQG not found in molecular structure %READC-ERR: atom 57 LYS 2HB not found in molecular structure %READC-ERR: atom 57 LYS 3HB not found in molecular structure %READC-ERR: atom 57 LYS QB not found in molecular structure %READC-ERR: atom 57 LYS 2HG not found in molecular structure %READC-ERR: atom 57 LYS 3HG not found in molecular structure %READC-ERR: atom 57 LYS QG not found in molecular structure %READC-ERR: atom 57 LYS 2HD not found in molecular structure %READC-ERR: atom 57 LYS 3HD not found in molecular structure %READC-ERR: atom 57 LYS QD not found in molecular structure %READC-ERR: atom 57 LYS 2HE not found in molecular structure %READC-ERR: atom 57 LYS 3HE not found in molecular structure %READC-ERR: atom 57 LYS QE not found in molecular structure %READC-ERR: atom 57 LYS 1HZ not found in molecular structure %READC-ERR: atom 57 LYS 2HZ not found in molecular structure %READC-ERR: atom 57 LYS 3HZ not found in molecular structure %READC-ERR: atom 57 LYS QZ not found in molecular structure %READC-ERR: atom 58 LEU 2HB not found in molecular structure %READC-ERR: atom 58 LEU 3HB not found in molecular structure %READC-ERR: atom 58 LEU QB not found in molecular structure %READC-ERR: atom 58 LEU QD1 not found in molecular structure %READC-ERR: atom 58 LEU QD2 not found in molecular structure %READC-ERR: atom 58 LEU 1HD1 not found in molecular structure %READC-ERR: atom 58 LEU 2HD1 not found in molecular structure %READC-ERR: atom 58 LEU 3HD1 not found in molecular structure %READC-ERR: atom 58 LEU 1HD2 not found in molecular structure %READC-ERR: atom 58 LEU 2HD2 not found in molecular structure %READC-ERR: atom 58 LEU 3HD2 not found in molecular structure %READC-ERR: atom 58 LEU QQD not found in molecular structure %READC-ERR: atom 59 ILE QG2 not found in molecular structure %READC-ERR: atom 59 ILE 1HG2 not found in molecular structure %READC-ERR: atom 59 ILE 2HG2 not found in molecular structure %READC-ERR: atom 59 ILE 3HG2 not found in molecular structure %READC-ERR: atom 59 ILE 2HG1 not found in molecular structure %READC-ERR: atom 59 ILE 3HG1 not found in molecular structure %READC-ERR: atom 59 ILE QG1 not found in molecular structure %READC-ERR: atom 59 ILE QD1 not found in molecular structure %READC-ERR: atom 59 ILE 1HD1 not found in molecular structure %READC-ERR: atom 59 ILE 2HD1 not found in molecular structure %READC-ERR: atom 59 ILE 3HD1 not found in molecular structure %READC-ERR: atom 60 SER 2HB not found in molecular structure %READC-ERR: atom 60 SER 3HB not found in molecular structure %READC-ERR: atom 60 SER QB not found in molecular structure %READC-ERR: atom 61 ALA QB not found in molecular structure %READC-ERR: atom 61 ALA 1HB not found in molecular structure %READC-ERR: atom 61 ALA 2HB not found in molecular structure %READC-ERR: atom 61 ALA 3HB not found in molecular structure %READC-ERR: atom 62 GLY 1HA not found in molecular structure %READC-ERR: atom 62 GLY 2HA not found in molecular structure %READC-ERR: atom 62 GLY QA not found in molecular structure %READC-ERR: atom 63 LYS 2HB not found in molecular structure %READC-ERR: atom 63 LYS 3HB not found in molecular structure %READC-ERR: atom 63 LYS QB not found in molecular structure %READC-ERR: atom 63 LYS 2HG not found in molecular structure %READC-ERR: atom 63 LYS 3HG not found in molecular structure %READC-ERR: atom 63 LYS QG not found in molecular structure %READC-ERR: atom 63 LYS 2HD not found in molecular structure %READC-ERR: atom 63 LYS 3HD not found in molecular structure %READC-ERR: atom 63 LYS QD not found in molecular structure %READC-ERR: atom 63 LYS 2HE not found in molecular structure %READC-ERR: atom 63 LYS 3HE not found in molecular structure %READC-ERR: atom 63 LYS QE not found in molecular structure %READC-ERR: atom 63 LYS 1HZ not found in molecular structure %READC-ERR: atom 63 LYS 2HZ not found in molecular structure %READC-ERR: atom 63 LYS 3HZ not found in molecular structure %READC-ERR: atom 63 LYS QZ not found in molecular structure %READC-ERR: atom 64 VAL QG1 not found in molecular structure %READC-ERR: atom 64 VAL QG2 not found in molecular structure %READC-ERR: atom 64 VAL 1HG1 not found in molecular structure %READC-ERR: atom 64 VAL 2HG1 not found in molecular structure %READC-ERR: atom 64 VAL 3HG1 not found in molecular structure %READC-ERR: atom 64 VAL 1HG2 not found in molecular structure %READC-ERR: atom 64 VAL 2HG2 not found in molecular structure %READC-ERR: atom 64 VAL 3HG2 not found in molecular structure %READC-ERR: atom 64 VAL QQG not found in molecular structure %READC-ERR: atom 65 LEU 2HB not found in molecular structure %READC-ERR: atom 65 LEU 3HB not found in molecular structure %READC-ERR: atom 65 LEU QB not found in molecular structure %READC-ERR: atom 65 LEU QD1 not found in molecular structure %READC-ERR: atom 65 LEU QD2 not found in molecular structure %READC-ERR: atom 65 LEU 1HD1 not found in molecular structure %READC-ERR: atom 65 LEU 2HD1 not found in molecular structure %READC-ERR: atom 65 LEU 3HD1 not found in molecular structure %READC-ERR: atom 65 LEU 1HD2 not found in molecular structure %READC-ERR: atom 65 LEU 2HD2 not found in molecular structure %READC-ERR: atom 65 LEU 3HD2 not found in molecular structure %READC-ERR: atom 65 LEU QQD not found in molecular structure %READC-ERR: atom 66 GLU 2HB not found in molecular structure %READC-ERR: atom 66 GLU 3HB not found in molecular structure %READC-ERR: atom 66 GLU QB not found in molecular structure %READC-ERR: atom 66 GLU 2HG not found in molecular structure %READC-ERR: atom 66 GLU 3HG not found in molecular structure %READC-ERR: atom 66 GLU QG not found in molecular structure %READC-ERR: atom 67 ASN 2HB not found in molecular structure %READC-ERR: atom 67 ASN 3HB not found in molecular structure %READC-ERR: atom 67 ASN QB not found in molecular structure %READC-ERR: atom 67 ASN 1HD2 not found in molecular structure %READC-ERR: atom 67 ASN 2HD2 not found in molecular structure %READC-ERR: atom 67 ASN QD2 not found in molecular structure %READC-ERR: atom 68 SER 2HB not found in molecular structure %READC-ERR: atom 68 SER 3HB not found in molecular structure %READC-ERR: atom 68 SER QB not found in molecular structure %READC-ERR: atom 69 LYS 2HB not found in molecular structure %READC-ERR: atom 69 LYS 3HB not found in molecular structure %READC-ERR: atom 69 LYS QB not found in molecular structure %READC-ERR: atom 69 LYS 2HG not found in molecular structure %READC-ERR: atom 69 LYS 3HG not found in molecular structure %READC-ERR: atom 69 LYS QG not found in molecular structure %READC-ERR: atom 69 LYS 2HD not found in molecular structure %READC-ERR: atom 69 LYS 3HD not found in molecular structure %READC-ERR: atom 69 LYS QD not found in molecular structure %READC-ERR: atom 69 LYS 2HE not found in molecular structure %READC-ERR: atom 69 LYS 3HE not found in molecular structure %READC-ERR: atom 69 LYS QE not found in molecular structure %READC-ERR: atom 69 LYS 1HZ not found in molecular structure %READC-ERR: atom 69 LYS 2HZ not found in molecular structure %READC-ERR: atom 69 LYS 3HZ not found in molecular structure %READC-ERR: atom 69 LYS QZ not found in molecular structure %READC-ERR: atom 70 THR QG2 not found in molecular structure %READC-ERR: atom 70 THR 1HG2 not found in molecular structure %READC-ERR: atom 70 THR 2HG2 not found in molecular structure %READC-ERR: atom 70 THR 3HG2 not found in molecular structure %READC-ERR: atom 71 VAL QG1 not found in molecular structure %READC-ERR: atom 71 VAL QG2 not found in molecular structure %READC-ERR: atom 71 VAL 1HG1 not found in molecular structure %READC-ERR: atom 71 VAL 2HG1 not found in molecular structure %READC-ERR: atom 71 VAL 3HG1 not found in molecular structure %READC-ERR: atom 71 VAL 1HG2 not found in molecular structure %READC-ERR: atom 71 VAL 2HG2 not found in molecular structure %READC-ERR: atom 71 VAL 3HG2 not found in molecular structure %READC-ERR: atom 71 VAL QQG not found in molecular structure %READC-ERR: atom 72 LYS 2HB not found in molecular structure %READC-ERR: atom 72 LYS 3HB not found in molecular structure %READC-ERR: atom 72 LYS QB not found in molecular structure %READC-ERR: atom 72 LYS 2HG not found in molecular structure %READC-ERR: atom 72 LYS 3HG not found in molecular structure %READC-ERR: atom 72 LYS QG not found in molecular structure %READC-ERR: atom 72 LYS 2HD not found in molecular structure %READC-ERR: atom 72 LYS 3HD not found in molecular structure %READC-ERR: atom 72 LYS QD not found in molecular structure %READC-ERR: atom 72 LYS 2HE not found in molecular structure %READC-ERR: atom 72 LYS 3HE not found in molecular structure %READC-ERR: atom 72 LYS QE not found in molecular structure %READC-ERR: atom 72 LYS 1HZ not found in molecular structure %READC-ERR: atom 72 LYS 2HZ not found in molecular structure %READC-ERR: atom 72 LYS 3HZ not found in molecular structure %READC-ERR: atom 72 LYS QZ not found in molecular structure %READC-ERR: atom 73 ASP 2HB not found in molecular structure %READC-ERR: atom 73 ASP 3HB not found in molecular structure %READC-ERR: atom 73 ASP QB not found in molecular structure %READC-ERR: atom 74 TYR 2HB not found in molecular structure %READC-ERR: atom 74 TYR 3HB not found in molecular structure %READC-ERR: atom 74 TYR QB not found in molecular structure %READC-ERR: atom 74 TYR QD not found in molecular structure %READC-ERR: atom 74 TYR QE not found in molecular structure %READC-ERR: atom 74 TYR QR not found in molecular structure %READC-ERR: atom 75 ARG 2HB not found in molecular structure %READC-ERR: atom 75 ARG 3HB not found in molecular structure %READC-ERR: atom 75 ARG QB not found in molecular structure %READC-ERR: atom 75 ARG 2HG not found in molecular structure %READC-ERR: atom 75 ARG 3HG not found in molecular structure %READC-ERR: atom 75 ARG QG not found in molecular structure %READC-ERR: atom 75 ARG 2HD not found in molecular structure %READC-ERR: atom 75 ARG 3HD not found in molecular structure %READC-ERR: atom 75 ARG QD not found in molecular structure %READC-ERR: atom 75 ARG 1HH1 not found in molecular structure %READC-ERR: atom 75 ARG 2HH1 not found in molecular structure %READC-ERR: atom 75 ARG QH1 not found in molecular structure %READC-ERR: atom 75 ARG 1HH2 not found in molecular structure %READC-ERR: atom 75 ARG 2HH2 not found in molecular structure %READC-ERR: atom 75 ARG QH2 not found in molecular structure %READC-ERR: atom 76 SER 2HB not found in molecular structure %READC-ERR: atom 76 SER 3HB not found in molecular structure %READC-ERR: atom 76 SER QB not found in molecular structure %READC-ERR: atom 77 PRO 2HB not found in molecular structure %READC-ERR: atom 77 PRO 3HB not found in molecular structure %READC-ERR: atom 77 PRO QB not found in molecular structure %READC-ERR: atom 77 PRO 2HG not found in molecular structure %READC-ERR: atom 77 PRO 3HG not found in molecular structure %READC-ERR: atom 77 PRO QG not found in molecular structure %READC-ERR: atom 77 PRO 2HD not found in molecular structure %READC-ERR: atom 77 PRO 3HD not found in molecular structure %READC-ERR: atom 77 PRO QD not found in molecular structure %READC-ERR: atom 78 VAL QG1 not found in molecular structure %READC-ERR: atom 78 VAL QG2 not found in molecular structure %READC-ERR: atom 78 VAL 1HG1 not found in molecular structure %READC-ERR: atom 78 VAL 2HG1 not found in molecular structure %READC-ERR: atom 78 VAL 3HG1 not found in molecular structure %READC-ERR: atom 78 VAL 1HG2 not found in molecular structure %READC-ERR: atom 78 VAL 2HG2 not found in molecular structure %READC-ERR: atom 78 VAL 3HG2 not found in molecular structure %READC-ERR: atom 78 VAL QQG not found in molecular structure %READC-ERR: atom 79 SER 2HB not found in molecular structure %READC-ERR: atom 79 SER 3HB not found in molecular structure %READC-ERR: atom 79 SER QB not found in molecular structure %READC-ERR: atom 80 ASN 2HB not found in molecular structure %READC-ERR: atom 80 ASN 3HB not found in molecular structure %READC-ERR: atom 80 ASN QB not found in molecular structure %READC-ERR: atom 80 ASN 1HD2 not found in molecular structure %READC-ERR: atom 80 ASN 2HD2 not found in molecular structure %READC-ERR: atom 80 ASN QD2 not found in molecular structure %READC-ERR: atom 81 LEU 2HB not found in molecular structure %READC-ERR: atom 81 LEU 3HB not found in molecular structure %READC-ERR: atom 81 LEU QB not found in molecular structure %READC-ERR: atom 81 LEU QD1 not found in molecular structure %READC-ERR: atom 81 LEU QD2 not found in molecular structure %READC-ERR: atom 81 LEU 1HD1 not found in molecular structure %READC-ERR: atom 81 LEU 2HD1 not found in molecular structure %READC-ERR: atom 81 LEU 3HD1 not found in molecular structure %READC-ERR: atom 81 LEU 1HD2 not found in molecular structure %READC-ERR: atom 81 LEU 2HD2 not found in molecular structure %READC-ERR: atom 81 LEU 3HD2 not found in molecular structure %READC-ERR: atom 81 LEU QQD not found in molecular structure %READC-ERR: atom 82 ALA QB not found in molecular structure %READC-ERR: atom 82 ALA 1HB not found in molecular structure %READC-ERR: atom 82 ALA 2HB not found in molecular structure %READC-ERR: atom 82 ALA 3HB not found in molecular structure %READC-ERR: atom 83 GLY 1HA not found in molecular structure %READC-ERR: atom 83 GLY 2HA not found in molecular structure %READC-ERR: atom 83 GLY QA not found in molecular structure %READC-ERR: atom 84 ALA QB not found in molecular structure %READC-ERR: atom 84 ALA 1HB not found in molecular structure %READC-ERR: atom 84 ALA 2HB not found in molecular structure %READC-ERR: atom 84 ALA 3HB not found in molecular structure %READC-ERR: atom 85 VAL QG1 not found in molecular structure %READC-ERR: atom 85 VAL QG2 not found in molecular structure %READC-ERR: atom 85 VAL 1HG1 not found in molecular structure %READC-ERR: atom 85 VAL 2HG1 not found in molecular structure %READC-ERR: atom 85 VAL 3HG1 not found in molecular structure %READC-ERR: atom 85 VAL 1HG2 not found in molecular structure %READC-ERR: atom 85 VAL 2HG2 not found in molecular structure %READC-ERR: atom 85 VAL 3HG2 not found in molecular structure %READC-ERR: atom 85 VAL QQG not found in molecular structure %READC-ERR: atom 86 THR QG2 not found in molecular structure %READC-ERR: atom 86 THR 1HG2 not found in molecular structure %READC-ERR: atom 86 THR 2HG2 not found in molecular structure %READC-ERR: atom 86 THR 3HG2 not found in molecular structure %READC-ERR: atom 87 THR QG2 not found in molecular structure %READC-ERR: atom 87 THR 1HG2 not found in molecular structure %READC-ERR: atom 87 THR 2HG2 not found in molecular structure %READC-ERR: atom 87 THR 3HG2 not found in molecular structure %READC-ERR: atom 88 MET 2HB not found in molecular structure %READC-ERR: atom 88 MET 3HB not found in molecular structure %READC-ERR: atom 88 MET QB not found in molecular structure %READC-ERR: atom 88 MET 2HG not found in molecular structure %READC-ERR: atom 88 MET 3HG not found in molecular structure %READC-ERR: atom 88 MET QG not found in molecular structure %READC-ERR: atom 88 MET QE not found in molecular structure %READC-ERR: atom 88 MET 1HE not found in molecular structure %READC-ERR: atom 88 MET 2HE not found in molecular structure %READC-ERR: atom 88 MET 3HE not found in molecular structure %READC-ERR: atom 89 HIS 2HB not found in molecular structure %READC-ERR: atom 89 HIS 3HB not found in molecular structure %READC-ERR: atom 89 HIS QB not found in molecular structure %READC-ERR: atom 90 VAL QG1 not found in molecular structure %READC-ERR: atom 90 VAL QG2 not found in molecular structure %READC-ERR: atom 90 VAL 1HG1 not found in molecular structure %READC-ERR: atom 90 VAL 2HG1 not found in molecular structure %READC-ERR: atom 90 VAL 3HG1 not found in molecular structure %READC-ERR: atom 90 VAL 1HG2 not found in molecular structure %READC-ERR: atom 90 VAL 2HG2 not found in molecular structure %READC-ERR: atom 90 VAL 3HG2 not found in molecular structure %READC-ERR: atom 90 VAL QQG not found in molecular structure %READC-ERR: atom 91 ILE QG2 not found in molecular structure %READC-ERR: atom 91 ILE 1HG2 not found in molecular structure %READC-ERR: atom 91 ILE 2HG2 not found in molecular structure %READC-ERR: atom 91 ILE 3HG2 not found in molecular structure %READC-ERR: atom 91 ILE 2HG1 not found in molecular structure %READC-ERR: atom 91 ILE 3HG1 not found in molecular structure %READC-ERR: atom 91 ILE QG1 not found in molecular structure %READC-ERR: atom 91 ILE QD1 not found in molecular structure %READC-ERR: atom 91 ILE 1HD1 not found in molecular structure %READC-ERR: atom 91 ILE 2HD1 not found in molecular structure %READC-ERR: atom 91 ILE 3HD1 not found in molecular structure %READC-ERR: atom 92 ILE QG2 not found in molecular structure %READC-ERR: atom 92 ILE 1HG2 not found in molecular structure %READC-ERR: atom 92 ILE 2HG2 not found in molecular structure %READC-ERR: atom 92 ILE 3HG2 not found in molecular structure %READC-ERR: atom 92 ILE 2HG1 not found in molecular structure %READC-ERR: atom 92 ILE 3HG1 not found in molecular structure %READC-ERR: atom 92 ILE QG1 not found in molecular structure %READC-ERR: atom 92 ILE QD1 not found in molecular structure %READC-ERR: atom 92 ILE 1HD1 not found in molecular structure %READC-ERR: atom 92 ILE 2HD1 not found in molecular structure %READC-ERR: atom 92 ILE 3HD1 not found in molecular structure %READC-ERR: atom 93 GLN 2HB not found in molecular structure %READC-ERR: atom 93 GLN 3HB not found in molecular structure %READC-ERR: atom 93 GLN QB not found in molecular structure %READC-ERR: atom 93 GLN 2HG not found in molecular structure %READC-ERR: atom 93 GLN 3HG not found in molecular structure %READC-ERR: atom 93 GLN QG not found in molecular structure %READC-ERR: atom 93 GLN 1HE2 not found in molecular structure %READC-ERR: atom 93 GLN 2HE2 not found in molecular structure %READC-ERR: atom 93 GLN QE2 not found in molecular structure %READC-ERR: atom 94 ALA QB not found in molecular structure %READC-ERR: atom 94 ALA 1HB not found in molecular structure %READC-ERR: atom 94 ALA 2HB not found in molecular structure %READC-ERR: atom 94 ALA 3HB not found in molecular structure %READC-ERR: atom 95 PRO 2HB not found in molecular structure %READC-ERR: atom 95 PRO 3HB not found in molecular structure %READC-ERR: atom 95 PRO QB not found in molecular structure %READC-ERR: atom 95 PRO 2HG not found in molecular structure %READC-ERR: atom 95 PRO 3HG not found in molecular structure %READC-ERR: atom 95 PRO QG not found in molecular structure %READC-ERR: atom 95 PRO 2HD not found in molecular structure %READC-ERR: atom 95 PRO 3HD not found in molecular structure %READC-ERR: atom 95 PRO QD not found in molecular structure %READC-ERR: atom 96 VAL QG1 not found in molecular structure %READC-ERR: atom 96 VAL QG2 not found in molecular structure %READC-ERR: atom 96 VAL 1HG1 not found in molecular structure %READC-ERR: atom 96 VAL 2HG1 not found in molecular structure %READC-ERR: atom 96 VAL 3HG1 not found in molecular structure %READC-ERR: atom 96 VAL 1HG2 not found in molecular structure %READC-ERR: atom 96 VAL 2HG2 not found in molecular structure %READC-ERR: atom 96 VAL 3HG2 not found in molecular structure %READC-ERR: atom 96 VAL QQG not found in molecular structure %READC-ERR: atom 97 THR QG2 not found in molecular structure %READC-ERR: atom 97 THR 1HG2 not found in molecular structure %READC-ERR: atom 97 THR 2HG2 not found in molecular structure %READC-ERR: atom 97 THR 3HG2 not found in molecular structure %READC-ERR: atom 98 GLU 2HB not found in molecular structure %READC-ERR: atom 98 GLU 3HB not found in molecular structure %READC-ERR: atom 98 GLU QB not found in molecular structure %READC-ERR: atom 98 GLU 2HG not found in molecular structure %READC-ERR: atom 98 GLU 3HG not found in molecular structure %READC-ERR: atom 98 GLU QG not found in molecular structure %READC-ERR: atom 99 LYS 2HB not found in molecular structure %READC-ERR: atom 99 LYS 3HB not found in molecular structure %READC-ERR: atom 99 LYS QB not found in molecular structure %READC-ERR: atom 99 LYS 2HG not found in molecular structure %READC-ERR: atom 99 LYS 3HG not found in molecular structure %READC-ERR: atom 99 LYS QG not found in molecular structure %READC-ERR: atom 99 LYS 2HD not found in molecular structure %READC-ERR: atom 99 LYS 3HD not found in molecular structure %READC-ERR: atom 99 LYS QD not found in molecular structure %READC-ERR: atom 99 LYS 2HE not found in molecular structure %READC-ERR: atom 99 LYS 3HE not found in molecular structure %READC-ERR: atom 99 LYS QE not found in molecular structure %READC-ERR: atom 99 LYS 1HZ not found in molecular structure %READC-ERR: atom 99 LYS 2HZ not found in molecular structure %READC-ERR: atom 99 LYS 3HZ not found in molecular structure %READC-ERR: atom 99 LYS QZ not found in molecular structure %READC-ERR: atom 100 GLU 2HB not found in molecular structure %READC-ERR: atom 100 GLU 3HB not found in molecular structure %READC-ERR: atom 100 GLU QB not found in molecular structure %READC-ERR: atom 100 GLU 2HG not found in molecular structure %READC-ERR: atom 100 GLU 3HG not found in molecular structure %READC-ERR: atom 100 GLU QG not found in molecular structure %READC-ERR: atom 101 LYS 2HB not found in molecular structure %READC-ERR: atom 101 LYS 3HB not found in molecular structure %READC-ERR: atom 101 LYS QB not found in molecular structure %READC-ERR: atom 101 LYS 2HG not found in molecular structure %READC-ERR: atom 101 LYS 3HG not found in molecular structure %READC-ERR: atom 101 LYS QG not found in molecular structure %READC-ERR: atom 101 LYS 2HD not found in molecular structure %READC-ERR: atom 101 LYS 3HD not found in molecular structure %READC-ERR: atom 101 LYS QD not found in molecular structure %READC-ERR: atom 101 LYS 2HE not found in molecular structure %READC-ERR: atom 101 LYS 3HE not found in molecular structure %READC-ERR: atom 101 LYS QE not found in molecular structure %READC-ERR: atom 101 LYS 1HZ not found in molecular structure %READC-ERR: atom 101 LYS 2HZ not found in molecular structure %READC-ERR: atom 101 LYS 3HZ not found in molecular structure %READC-ERR: atom 101 LYS QZ not found in molecular structure %READC-ERR: atom 101 LYS O not found in molecular structure COOR>END CNSsolve>parameter @TOPPAR:parallhdg5.3.pro end PARRDR>! JFD adds FES complex parameters from Milo Westler's calculations PARRDR>! and standard topology. PARRDR> PARRDR>remark file protein-allhdg-ucl.param version UCL date 07-JUL-01 PARRDR>remark for file protein-allhdg-ucl.top version UCL date 14-MAR-00 PARRDR>remark for file protein-allhdg-dih-ucl.top version UCL date 07-JUL-01 PARRDR>remark Geometric energy function parameters for distance geometry and PARRDR>remark simulated annealing. PARRDR>remark Original author: Michael Nilges, EMBL Heidelberg PARRDR>remark Modifications: Mark A. Williams, UCL London PARRDR> PARRDR>set echo off message off end SHOW: sum over selected elements = 2.000000 CNSsolve> CNSsolve> if ( $log_level = verbose ) then CNSsolve> set message=normal echo=on end CNSsolve> else CNSsolve> set message=off echo=off end CNSsolve> end if CNSsolve> CNSsolve> CNSsolve> identity (store1) (none) SELRPN: 0 atoms have been selected out of 1586 CNSsolve> CNSsolve> identity (store1) (&atom_build) SELRPN: 539 atoms have been selected out of 1586 CNSsolve> identity (store1) (store1 or hydrogen) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 809 atoms have been selected out of 1586 SHOW: sum over selected elements = 809.000000 CNSsolve> evaluate ($tobuild=$result) EVALUATE: symbol $TOBUILD set to 809.000 (real) CNSsolve> CNSsolve> !evaluate ($tobuild=0) CNSsolve> CNSsolve> if ( $tobuild > 0 ) then NEXTCD: condition evaluated as true CNSsolve> CNSsolve> fix selection=(not(store1)) end SELRPN: 777 atoms have been selected out of 1586 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 809 atoms have been selected out of 1586 SHOW: sum over selected elements = 809.000000 CNSsolve> evaluate ($moving=$result) EVALUATE: symbol $MOVING set to 809.000 (real) CNSsolve> CNSsolve> if ( $moving > 0 ) then NEXTCD: condition evaluated as true CNSsolve> for $id in id (tag and byres(store1)) loop avco SELRPN: 101 atoms have been selected out of 1586 FOR ID LOOP: symbol ID set to 1.00000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 1.108400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.10840 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -0.066000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.660000E-01 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -1.697100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.69710 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 18.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 5.669143 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.66914 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 0.281000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.281000 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -2.124429 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.12443 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 28.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 7.239091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.23909 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 0.103636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.103636 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -5.544818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.54482 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 43.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 9.157500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.15750 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 4.659500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.65950 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -5.010300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.01030 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 59.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 16 atoms have been selected out of 1586 SHOW: average of selected elements = 14.391188 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 14.3912 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 16 atoms have been selected out of 1586 SHOW: average of selected elements = 5.993813 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.99381 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 16 atoms have been selected out of 1586 SHOW: average of selected elements = -6.685563 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.68556 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 77.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 13.673800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.6738 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 5.865000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.86500 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -1.526200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.52620 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 91.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 16.431727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 16.4317 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 6.214818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.21482 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 1.313000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.31300 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 108.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 19.318000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 19.3180 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 2.377455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.37745 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 2.412909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.41291 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 127.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 15.684545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.6845 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -0.138273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.138273 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 3.647364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.64736 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 142.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 18.796182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.7962 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -0.828000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.828000 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 7.747182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.74718 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 161.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 17.262545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 17.2625 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -5.464364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.46436 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 9.797364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.79736 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 183.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1586 SHOW: average of selected elements = 18.998833 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.9988 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1586 SHOW: average of selected elements = -2.559778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.55978 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1586 SHOW: average of selected elements = 13.780611 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 13.7806 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 203.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = 19.727643 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 19.7276 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = -10.799071 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.7991 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = 13.736643 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 13.7366 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 227.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 18.998909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.9989 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -9.260455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.26045 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 18.664182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 18.6642 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 246.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 22.314818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 22.3148 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -12.352091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.3521 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 19.832455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 19.8325 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 260.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 18.561000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.5610 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -13.984000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.9840 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 21.138300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 21.1383 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 272.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = 17.455400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 17.4554 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -13.585200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.5852 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = 17.033800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 17.0338 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 279.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 15.349000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.3490 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -11.266778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.2668 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 17.832222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 17.8322 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 290.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 13.676800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.6768 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -9.196400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.19640 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 14.759400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 14.7594 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 302.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 14.370182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 14.3702 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -4.628000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.62800 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 15.347273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 15.3473 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 321.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = 12.065600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 12.0656 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -3.086600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.08660 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = 13.067600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 13.0676 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 328.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 12.474375 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 12.4744 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -2.288250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.28825 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 9.381375 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.38138 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 342.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 13.615818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.6158 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 1.412636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.41264 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 10.076000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 10.0760 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 364.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 14.978857 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 14.9789 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 3.951286 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.95129 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 6.524857 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.52486 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 374.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1586 SHOW: average of selected elements = 18.482667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.4827 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1586 SHOW: average of selected elements = 3.185222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.18522 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1586 SHOW: average of selected elements = 8.007722 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 8.00772 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 394.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 20.156000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 20.1560 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 7.600250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.60025 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 4.553125 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.55313 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 408.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 23.570100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.5701 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 7.530900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.53090 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 1.705300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.70530 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 420.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 23.995429 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.9954 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 10.435286 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.4353 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 3.891857 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.89186 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 430.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 22.770818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 22.7708 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 8.938545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.93855 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 7.211818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.21182 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 444.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 25.717000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.7170 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 9.890364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.89036 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 10.313000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 10.3130 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 458.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 27.191300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 27.1913 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 5.808700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.80870 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 11.693600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 11.6936 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 474.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 25.835444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.8354 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 8.671444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.67144 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 14.359667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 14.3597 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 485.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 22.453714 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 22.4537 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 8.269857 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.26986 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 13.736857 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 13.7369 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 495.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 22.718636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 22.7186 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 3.954182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.95418 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 12.749727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 12.7497 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 514.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 25.170364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.1704 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 4.049455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.04945 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 16.569909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 16.5699 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 536.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 21.712818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 21.7128 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 7.363545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.36355 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 18.593909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 18.5939 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 551.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 18.552455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.5525 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 4.989545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.98955 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 15.734364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 15.7344 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 565.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 19.803300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 19.8033 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 1.717700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.71770 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 18.471400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 18.4714 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 581.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 19.637000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 19.6370 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 4.386364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.38636 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 21.646545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 21.6465 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 600.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 15.727111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.7271 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 5.625556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.62556 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 20.240111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 20.2401 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 611.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 13.900545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.9005 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 1.289091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.28909 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 19.285636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 19.2856 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 626.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1586 SHOW: average of selected elements = 18.107955 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.1080 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1586 SHOW: average of selected elements = -2.522318 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.52232 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1586 SHOW: average of selected elements = 23.232273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 23.2323 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 650.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 15.466125 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.4661 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -0.416250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.416250 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 25.816000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 25.8160 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 664.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = 16.965143 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 16.9651 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = 4.357214 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.35721 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = 26.708929 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 26.7089 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 688.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 14.737818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 14.7378 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 0.459000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.459000 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 30.846091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 30.8461 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 703.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 17.060000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 17.0600 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -3.626636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.62664 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 28.802455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 28.8025 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 725.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 18.416000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.4160 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -4.027091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.02709 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 33.648000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 33.6480 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 740.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 22.239700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 22.2397 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -6.320500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.32050 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 32.540800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 32.5408 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 754.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = 22.678000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 22.6780 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -3.657200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.65720 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = 29.109800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 29.1098 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 761.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 22.386625 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 22.3866 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -1.833000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.83300 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 26.005875 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 26.0059 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 775.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 22.092727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 22.0927 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 2.258273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.25827 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 27.900818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 27.9008 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 797.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 24.220909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 24.2209 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 4.573818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.57382 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 25.736182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 25.7362 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 811.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 25.346100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.3461 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 5.379800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.37980 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 21.637600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 21.6376 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 827.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 29.424273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.4243 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 6.044455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.04445 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 24.494364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 24.4944 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 849.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 27.491000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 27.4910 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 1.428545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.42855 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 25.988455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 25.9885 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 864.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 26.561800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 26.5618 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 0.870700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.870700 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 21.039700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 21.0397 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 880.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 29.903091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.9031 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -0.958182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.958182 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 18.998909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 18.9989 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 902.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 27.723727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 27.7237 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -0.366091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.366091 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 14.278636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 14.2786 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 921.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 29.335909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.3359 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -4.441182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.44118 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 13.115818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 13.1158 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 940.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 28.918889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 28.9189 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -3.761444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.76144 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 8.744778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 8.74478 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 951.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 29.630286 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.6303 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -7.222857 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.22286 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 7.301286 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.30129 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 961.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = 32.034400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.0344 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -7.540600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.54060 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = 9.558600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.55860 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 968.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 33.967818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 33.9678 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -3.904909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.90491 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 8.816636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 8.81664 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 990.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 33.981600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 33.9816 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -1.806700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.80670 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 12.382100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 12.3821 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1006.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 31.124818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.1248 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 1.151455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.15145 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 11.463182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 11.4632 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1025.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 33.315727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 33.3157 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 4.948636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.94864 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 13.325909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 13.3259 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1040.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 30.714300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.7143 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 8.615400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.61540 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 13.817100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 13.8171 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1054.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 33.703778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 33.7038 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 9.983111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.98311 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 11.731000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 11.7310 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1065.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 32.786455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.7865 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 6.915636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.91564 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 9.025000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.02500 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1087.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 29.022364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.0224 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 8.557182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.55718 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 6.207727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.20773 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1101.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 26.301900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 26.3019 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 5.329600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.32960 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 4.823500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.82350 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1117.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 27.892364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 27.8924 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 7.779909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.77991 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 0.593818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.593818 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1139.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 32.346500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.3465 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 6.594700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.59470 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 3.114600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.11460 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1151.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1586 SHOW: average of selected elements = 31.291895 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.2919 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1586 SHOW: average of selected elements = 1.535211 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.53521 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1586 SHOW: average of selected elements = 5.153474 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.15347 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1172.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = 27.110571 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 27.1106 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = 1.882143 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.88214 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = -0.653714 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.653714 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1196.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 30.524333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.5243 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 1.927111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.92711 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -3.890111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.89011 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1207.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 31.498750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.4988 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 4.692500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.69250 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -6.244125 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.24413 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1221.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 28.879700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 28.8797 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 5.768700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.76870 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -9.165700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.16570 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1237.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 25.978333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.9783 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 6.002111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.00211 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -6.404778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.40478 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1248.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 24.022500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 24.0225 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 2.138700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.13870 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -5.564300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.56430 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1262.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 20.016727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 20.0167 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 1.087636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.08764 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -6.629818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.62982 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1281.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 17.799571 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 17.7996 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 0.621000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.621000 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -3.427000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.42700 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1291.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = 16.030800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 16.0308 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -2.387600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.38760 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -2.084400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.08440 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1298.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 17.113286 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 17.1133 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -4.672000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.67200 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -0.853714 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.853714 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1308.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 16.638400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 16.6384 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -5.567400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.56740 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 3.110100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.11010 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1324.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 20.531727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 20.5317 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -4.207545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.20755 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 4.650182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.65018 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1338.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 21.072727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 21.0727 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -7.571455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.57145 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 7.624818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.62482 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1352.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 23.021000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.0210 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -4.644100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.64410 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 11.542300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 11.5423 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1369.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 16 atoms have been selected out of 1586 SHOW: average of selected elements = 25.444750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.4448 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 16 atoms have been selected out of 1586 SHOW: average of selected elements = -8.260938 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.26094 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 16 atoms have been selected out of 1586 SHOW: average of selected elements = 11.801188 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 11.8012 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1387.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 24.300400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 24.3004 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -5.746400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.74640 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 17.099100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 17.0991 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1403.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 28.176182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 28.1762 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -5.832545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.83255 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 19.210273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 19.2103 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1422.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 26.519727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 26.5197 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -5.814727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.81473 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 23.264091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 23.2641 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1441.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 31.153273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.1533 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -4.000000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.00000 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 24.018182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 24.0182 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1458.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 30.546429 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.5464 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -3.687714 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.68771 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 28.349286 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 28.3493 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1468.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 32.377625 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.3776 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -1.594875 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.59488 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 30.706750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 30.7068 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1482.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 35.491600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.4916 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -2.905500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.90550 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 33.291600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 33.2916 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1498.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 33.134364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 33.1344 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -4.289455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.28945 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 36.389455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 36.3895 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1512.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 29.758091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.7581 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -5.732727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.73273 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 34.152909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 34.1529 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1527.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 25.200455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.2005 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -3.942182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.94218 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 37.712182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 37.7122 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1549.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 26.086091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 26.0861 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -8.354364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.35436 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 38.573000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 38.5730 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1564.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 20.890800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 20.8908 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -10.556000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.5560 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 36.556100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 36.5561 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 15 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 15 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 15 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) CNSsolve> evaluate ($ave_x=$result) CNSsolve> show ave(y) (byres(id $id) and known) CNSsolve> evaluate ($ave_y=$result) CNSsolve> show ave(z) (byres(id $id) and known) CNSsolve> evaluate ($ave_z=$result) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) CNSsolve> do (y=$ave_y) (byres(id $id) and store1) CNSsolve> do (z=$ave_z) (byres(id $id) and store1) CNSsolve> CNSsolve> end loop avco CNSsolve> CNSsolve> do (x=x+random(2.0)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (y=y+random(2.0)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (z=z+random(2.0)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> {- start parameter for the side chain building -} CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=20. nbxmod=-2 repel=0.9 wmin=0.1 tolerance=1. NBDSET> rexp=2 irexp=2 inhibit=0.25 NBDSET> end PARRDR> end CNSsolve> CNSsolve> {- Friction coefficient, in 1/ps. -} CNSsolve> do (fbeta=100) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> evaluate ($bath=300.0) EVALUATE: symbol $BATH set to 300.000 (real) CNSsolve> evaluate ($nstep=500) EVALUATE: symbol $NSTEP set to 500.000 (real) CNSsolve> evaluate ($timestep=0.0005) EVALUATE: symbol $TIMESTEP set to 0.500000E-03 (real) CNSsolve> CNSsolve> do (refy=mass) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> do (mass=20) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> igroup interaction SELRPN> (store1) (store1 or known) SELRPN: 809 atoms have been selected out of 1586 SELRPN: 1586 atoms have been selected out of 1586 IGROup> end CNSsolve> CNSsolve> {- turn on initial energy terms -} CNSsolve> flags exclude * include bond angle vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 2427 NBONDS: generating intra-molecular exclusion list with mode=-2 MAKINB: mode -2 found 809 exclusions and 0 interactions(1-4) %atoms " -7 -GLN -HG2 " and " -7 -GLN -HE21" only 0.09 A apart %atoms " -10 -ILE -HD12" and " -10 -ILE -HD13" only 0.09 A apart %atoms " -34 -LEU -HD11" and " -34 -LEU -HD23" only 0.09 A apart %atoms " -35 -LYS -HE2 " and " -35 -LYS -HZ3 " only 0.04 A apart %atoms " -38 -VAL -HN " and " -38 -VAL -HG12" only 0.10 A apart %atoms " -42 -TRP -HB1 " and " -42 -TRP -HD1 " only 0.07 A apart %atoms " -45 -GLU -HB1 " and " -45 -GLU -HB2 " only 0.09 A apart %atoms " -46 -LYS -HA " and " -46 -LYS -HZ1 " only 0.09 A apart %atoms " -50 -PRO -HA " and " -50 -PRO -HG1 " only 0.10 A apart %atoms " -51 -LYS -HD1 " and " -51 -LYS -HD2 " only 0.09 A apart %atoms " -64 -VAL -HG21" and " -64 -VAL -HG23" only 0.05 A apart %atoms " -68 -SER -HA " and " -68 -SER -HB1 " only 0.08 A apart %atoms " -76 -SER -HB1 " and " -76 -SER -HB2 " only 0.08 A apart %atoms " -93 -GLN -HG2 " and " -93 -GLN -HE21" only 0.06 A apart NBONDS: found 96729 intra-atom interactions NBONDS: found 14 nonbonded violations %atoms " -22 -PRO -HB2 " and " -22 -PRO -HD1 " only 0.08 A apart %atoms " -58 -LEU -HG " and " -58 -LEU -HD12" only 0.09 A apart NBONDS: found 95676 intra-atom interactions NBONDS: found 2 nonbonded violations NBONDS: found 91841 intra-atom interactions NBONDS: found 88800 intra-atom interactions NBONDS: found 88723 intra-atom interactions --------------- cycle= 10 ------ stepsize= -0.0001 ----------------------- | Etotal =447167.409 grad(E)=607.900 E(BOND)=72626.284 E(ANGL)=214791.871 | | E(VDW )=159749.253 | ------------------------------------------------------------------------------- NBONDS: found 88943 intra-atom interactions NBONDS: found 88940 intra-atom interactions NBONDS: found 88839 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0000 ----------------------- | Etotal =149797.762 grad(E)=349.416 E(BOND)=23857.862 E(ANGL)=51192.502 | | E(VDW )=74747.398 | ------------------------------------------------------------------------------- NBONDS: found 88997 intra-atom interactions NBONDS: found 89028 intra-atom interactions NBONDS: found 89036 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0000 ----------------------- | Etotal =129204.264 grad(E)=323.568 E(BOND)=19853.839 E(ANGL)=40657.783 | | E(VDW )=68692.641 | ------------------------------------------------------------------------------- NBONDS: found 89056 intra-atom interactions --------------- cycle= 40 ------ stepsize= -0.0001 ----------------------- | Etotal =127748.094 grad(E)=321.992 E(BOND)=19788.227 E(ANGL)=40038.574 | | E(VDW )=67921.293 | ------------------------------------------------------------------------------- --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =127611.183 grad(E)=321.561 E(BOND)=19888.248 E(ANGL)=40023.260 | | E(VDW )=67699.675 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> flags exclude vdw include impr end CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=541754.603 E(kin)=719.635 temperature=298.423 | | Etotal =541034.968 grad(E)=656.023 E(BOND)=19888.248 E(ANGL)=40023.260 | | E(IMPR)=481123.459 | ------------------------------------------------------------------------------- -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=359548.972 E(kin)=52214.702 temperature=21652.767 | | Etotal =307334.270 grad(E)=407.928 E(BOND)=39156.992 E(ANGL)=108395.779 | | E(IMPR)=159781.498 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 22.94914 -0.07269 13.93130 velocity [A/ps] : -0.63563 0.40822 0.69767 ang. mom. [amu A/ps] :-145328.70154 21217.97015 -55899.24178 kin. ener. [Kcal/mol] : 20.44566 CNSsolve> CNSsolve> flags include vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 2427 NBONDS: found 88749 intra-atom interactions NBONDS: found 88548 intra-atom interactions NBONDS: found 88683 intra-atom interactions NBONDS: found 88683 intra-atom interactions NBONDS: found 88766 intra-atom interactions --------------- cycle= 10 ------ stepsize= -0.0002 ----------------------- | Etotal =271305.054 grad(E)=412.500 E(BOND)=42716.114 E(ANGL)=69920.151 | | E(IMPR)=115811.214 E(VDW )=42857.575 | ------------------------------------------------------------------------------- NBONDS: found 88888 intra-atom interactions NBONDS: found 88920 intra-atom interactions NBONDS: found 88870 intra-atom interactions NBONDS: found 88812 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0001 ----------------------- | Etotal =177139.563 grad(E)=270.104 E(BOND)=17969.515 E(ANGL)=29431.634 | | E(IMPR)=88032.824 E(VDW )=41705.590 | ------------------------------------------------------------------------------- NBONDS: found 88831 intra-atom interactions NBONDS: found 88864 intra-atom interactions NBONDS: found 88882 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0002 ----------------------- | Etotal =162788.079 grad(E)=268.425 E(BOND)=17579.380 E(ANGL)=26971.746 | | E(IMPR)=77700.236 E(VDW )=40536.717 | ------------------------------------------------------------------------------- NBONDS: found 88850 intra-atom interactions NBONDS: found 88888 intra-atom interactions --------------- cycle= 40 ------ stepsize= 0.0005 ----------------------- | Etotal =147717.988 grad(E)=270.183 E(BOND)=17781.038 E(ANGL)=24468.602 | | E(IMPR)=65769.945 E(VDW )=39698.404 | ------------------------------------------------------------------------------- NBONDS: found 88898 intra-atom interactions NBONDS: found 88929 intra-atom interactions NBONDS: found 88971 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0004 ----------------------- | Etotal =135609.891 grad(E)=270.577 E(BOND)=17663.857 E(ANGL)=22198.795 | | E(IMPR)=56815.725 E(VDW )=38931.514 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=136359.917 E(kin)=750.027 temperature=311.027 | | Etotal =135609.891 grad(E)=270.577 E(BOND)=17663.857 E(ANGL)=22198.795 | | E(IMPR)=56815.725 E(VDW )=38931.514 | ------------------------------------------------------------------------------- NBONDS: found 88938 intra-atom interactions NBONDS: found 88936 intra-atom interactions -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=130489.351 E(kin)=4543.483 temperature=1884.124 | | Etotal =125945.868 grad(E)=273.030 E(BOND)=18178.352 E(ANGL)=20892.396 | | E(IMPR)=48287.030 E(VDW )=38588.091 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 22.94188 -0.05948 13.93103 velocity [A/ps] : -0.04521 0.16259 0.08420 ang. mom. [amu A/ps] : 63627.92699 -38350.10565 -54646.40097 kin. ener. [Kcal/mol] : 0.68775 CNSsolve> CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=2. nbxmod=-3 repel=0.75 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=100 nprint=25 end POWELL: number of degrees of freedom= 2427 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 2666 exclusions and 0 interactions(1-4) NBONDS: found 87071 intra-atom interactions NBONDS: found 87587 intra-atom interactions NBONDS: found 87538 intra-atom interactions NBONDS: found 87485 intra-atom interactions NBONDS: found 87453 intra-atom interactions --------------- cycle= 25 ------ stepsize= 0.0000 ----------------------- | Etotal =53299.541 grad(E)=312.082 E(BOND)=1712.151 E(ANGL)=12360.659 | | E(IMPR)=39221.952 E(VDW )=4.778 | ------------------------------------------------------------------------------- --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =48388.055 grad(E)=65.241 E(BOND)=1672.186 E(ANGL)=12543.236 | | E(IMPR)=34168.067 E(VDW )=4.565 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=49116.690 E(kin)=728.636 temperature=302.156 | | Etotal =48388.054 grad(E)=65.241 E(BOND)=1672.186 E(ANGL)=12543.235 | | E(IMPR)=34168.067 E(VDW )=4.565 | ------------------------------------------------------------------------------- NBONDS: found 87517 intra-atom interactions NBONDS: found 87542 intra-atom interactions NBONDS: found 87493 intra-atom interactions NBONDS: found 87523 intra-atom interactions NBONDS: found 87518 intra-atom interactions NBONDS: found 87571 intra-atom interactions NBONDS: found 87573 intra-atom interactions NBONDS: found 87587 intra-atom interactions NBONDS: found 87588 intra-atom interactions NBONDS: found 87493 intra-atom interactions NBONDS: found 87523 intra-atom interactions NBONDS: found 87554 intra-atom interactions NBONDS: found 87567 intra-atom interactions NBONDS: found 87599 intra-atom interactions NBONDS: found 87541 intra-atom interactions NBONDS: found 87489 intra-atom interactions NBONDS: found 87467 intra-atom interactions NBONDS: found 87544 intra-atom interactions NBONDS: found 87544 intra-atom interactions NBONDS: found 87562 intra-atom interactions NBONDS: found 87554 intra-atom interactions NBONDS: found 87566 intra-atom interactions NBONDS: found 87520 intra-atom interactions NBONDS: found 87515 intra-atom interactions NBONDS: found 87530 intra-atom interactions NBONDS: found 87540 intra-atom interactions NBONDS: found 87535 intra-atom interactions NBONDS: found 87542 intra-atom interactions NBONDS: found 87551 intra-atom interactions NBONDS: found 87529 intra-atom interactions NBONDS: found 87548 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=4684.647 E(kin)=1176.177 temperature=487.746 | | Etotal =3508.470 grad(E)=67.138 E(BOND)=246.678 E(ANGL)=1755.522 | | E(IMPR)=1505.395 E(VDW )=0.876 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 22.93963 -0.05841 13.92826 velocity [A/ps] : 0.10055 0.25374 -0.10588 ang. mom. [amu A/ps] : 10327.36101 4286.30539 -24750.14819 kin. ener. [Kcal/mol] : 1.65712 CNSsolve> CNSsolve> {- turn on all energy terms -} CNSsolve> flags include dihe ? end EFLAGS: the following energy flags are set EFLAGS: BOND ANGL DIHE IMPR VDW CNSsolve> CNSsolve> {- set repel to ~vdw radii -} CNSsolve> parameter PARRDR> nbonds NBDSET> repel=0.89 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=500 nprint=50 end POWELL: number of degrees of freedom= 2427 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 2666 exclusions and 0 interactions(1-4) NBONDS: found 87541 intra-atom interactions NBONDS: found 87490 intra-atom interactions NBONDS: found 87530 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =4440.606 grad(E)=285.320 E(BOND)=11.676 E(ANGL)=1180.278 | | E(DIHE)=68.193 E(IMPR)=3113.648 E(VDW )=66.810 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> flags exclude * include bond angl impr dihe vdw end CNSsolve> CNSsolve> {- return masses to something sensible -} CNSsolve> do (mass=refy) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=3020.920 E(kin)=749.274 temperature=310.714 | | Etotal =2271.646 grad(E)=45.630 E(BOND)=11.677 E(ANGL)=1180.290 | | E(DIHE)=68.193 E(IMPR)=944.676 E(VDW )=66.810 | ------------------------------------------------------------------------------- NBONDS: found 87533 intra-atom interactions NBONDS: found 87493 intra-atom interactions NBONDS: found 87539 intra-atom interactions NBONDS: found 87547 intra-atom interactions NBONDS: found 87584 intra-atom interactions NBONDS: found 87580 intra-atom interactions NBONDS: found 87587 intra-atom interactions NBONDS: found 87574 intra-atom interactions NBONDS: found 87572 intra-atom interactions NBONDS: found 87573 intra-atom interactions NBONDS: found 87540 intra-atom interactions NBONDS: found 87516 intra-atom interactions NBONDS: found 87503 intra-atom interactions NBONDS: found 87516 intra-atom interactions NBONDS: found 87537 intra-atom interactions NBONDS: found 87553 intra-atom interactions NBONDS: found 87596 intra-atom interactions NBONDS: found 87608 intra-atom interactions NBONDS: found 87632 intra-atom interactions NBONDS: found 87643 intra-atom interactions NBONDS: found 87601 intra-atom interactions NBONDS: found 87564 intra-atom interactions NBONDS: found 87493 intra-atom interactions NBONDS: found 87453 intra-atom interactions NBONDS: found 87519 intra-atom interactions NBONDS: found 87551 intra-atom interactions NBONDS: found 87560 intra-atom interactions NBONDS: found 87584 intra-atom interactions NBONDS: found 87599 intra-atom interactions NBONDS: found 87614 intra-atom interactions NBONDS: found 87596 intra-atom interactions NBONDS: found 87563 intra-atom interactions NBONDS: found 87524 intra-atom interactions NBONDS: found 87477 intra-atom interactions NBONDS: found 87502 intra-atom interactions NBONDS: found 87544 intra-atom interactions NBONDS: found 87582 intra-atom interactions NBONDS: found 87593 intra-atom interactions NBONDS: found 87611 intra-atom interactions NBONDS: found 87615 intra-atom interactions NBONDS: found 87630 intra-atom interactions NBONDS: found 87629 intra-atom interactions NBONDS: found 87586 intra-atom interactions NBONDS: found 87552 intra-atom interactions NBONDS: found 87519 intra-atom interactions NBONDS: found 87520 intra-atom interactions NBONDS: found 87552 intra-atom interactions NBONDS: found 87585 intra-atom interactions NBONDS: found 87616 intra-atom interactions NBONDS: found 87625 intra-atom interactions NBONDS: found 87626 intra-atom interactions NBONDS: found 87632 intra-atom interactions NBONDS: found 87620 intra-atom interactions NBONDS: found 87619 intra-atom interactions NBONDS: found 87577 intra-atom interactions NBONDS: found 87533 intra-atom interactions NBONDS: found 87491 intra-atom interactions NBONDS: found 87464 intra-atom interactions NBONDS: found 87464 intra-atom interactions NBONDS: found 87539 intra-atom interactions NBONDS: found 87577 intra-atom interactions NBONDS: found 87596 intra-atom interactions NBONDS: found 87627 intra-atom interactions NBONDS: found 87619 intra-atom interactions NBONDS: found 87611 intra-atom interactions NBONDS: found 87576 intra-atom interactions NBONDS: found 87555 intra-atom interactions NBONDS: found 87522 intra-atom interactions NBONDS: found 87489 intra-atom interactions NBONDS: found 87471 intra-atom interactions NBONDS: found 87512 intra-atom interactions NBONDS: found 87521 intra-atom interactions NBONDS: found 87560 intra-atom interactions NBONDS: found 87582 intra-atom interactions NBONDS: found 87590 intra-atom interactions NBONDS: found 87575 intra-atom interactions NBONDS: found 87581 intra-atom interactions NBONDS: found 87582 intra-atom interactions NBONDS: found 87586 intra-atom interactions NBONDS: found 87579 intra-atom interactions NBONDS: found 87555 intra-atom interactions NBONDS: found 87536 intra-atom interactions NBONDS: found 87572 intra-atom interactions NBONDS: found 87593 intra-atom interactions NBONDS: found 87604 intra-atom interactions NBONDS: found 87625 intra-atom interactions NBONDS: found 87658 intra-atom interactions NBONDS: found 87656 intra-atom interactions NBONDS: found 87649 intra-atom interactions NBONDS: found 87635 intra-atom interactions NBONDS: found 87637 intra-atom interactions NBONDS: found 87622 intra-atom interactions NBONDS: found 87599 intra-atom interactions NBONDS: found 87582 intra-atom interactions NBONDS: found 87542 intra-atom interactions NBONDS: found 87531 intra-atom interactions NBONDS: found 87525 intra-atom interactions NBONDS: found 87540 intra-atom interactions NBONDS: found 87566 intra-atom interactions NBONDS: found 87606 intra-atom interactions NBONDS: found 87634 intra-atom interactions NBONDS: found 87653 intra-atom interactions NBONDS: found 87644 intra-atom interactions NBONDS: found 87592 intra-atom interactions NBONDS: found 87546 intra-atom interactions NBONDS: found 87542 intra-atom interactions NBONDS: found 87541 intra-atom interactions NBONDS: found 87577 intra-atom interactions NBONDS: found 87609 intra-atom interactions NBONDS: found 87634 intra-atom interactions NBONDS: found 87660 intra-atom interactions NBONDS: found 87664 intra-atom interactions NBONDS: found 87639 intra-atom interactions NBONDS: found 87598 intra-atom interactions NBONDS: found 87565 intra-atom interactions NBONDS: found 87531 intra-atom interactions NBONDS: found 87531 intra-atom interactions NBONDS: found 87560 intra-atom interactions NBONDS: found 87594 intra-atom interactions NBONDS: found 87627 intra-atom interactions NBONDS: found 87599 intra-atom interactions NBONDS: found 87557 intra-atom interactions NBONDS: found 87573 intra-atom interactions NBONDS: found 87586 intra-atom interactions NBONDS: found 87608 intra-atom interactions NBONDS: found 87574 intra-atom interactions NBONDS: found 87555 intra-atom interactions NBONDS: found 87534 intra-atom interactions NBONDS: found 87525 intra-atom interactions NBONDS: found 87534 intra-atom interactions NBONDS: found 87574 intra-atom interactions NBONDS: found 87599 intra-atom interactions NBONDS: found 87624 intra-atom interactions NBONDS: found 87644 intra-atom interactions NBONDS: found 87659 intra-atom interactions NBONDS: found 87652 intra-atom interactions NBONDS: found 87647 intra-atom interactions NBONDS: found 87607 intra-atom interactions NBONDS: found 87593 intra-atom interactions NBONDS: found 87568 intra-atom interactions NBONDS: found 87545 intra-atom interactions NBONDS: found 87560 intra-atom interactions NBONDS: found 87577 intra-atom interactions NBONDS: found 87603 intra-atom interactions NBONDS: found 87638 intra-atom interactions NBONDS: found 87664 intra-atom interactions NBONDS: found 87675 intra-atom interactions NBONDS: found 87675 intra-atom interactions NBONDS: found 87662 intra-atom interactions NBONDS: found 87634 intra-atom interactions NBONDS: found 87582 intra-atom interactions NBONDS: found 87562 intra-atom interactions NBONDS: found 87559 intra-atom interactions NBONDS: found 87553 intra-atom interactions NBONDS: found 87555 intra-atom interactions NBONDS: found 87556 intra-atom interactions NBONDS: found 87567 intra-atom interactions NBONDS: found 87567 intra-atom interactions NBONDS: found 87606 intra-atom interactions NBONDS: found 87646 intra-atom interactions NBONDS: found 87661 intra-atom interactions NBONDS: found 87661 intra-atom interactions NBONDS: found 87631 intra-atom interactions NBONDS: found 87602 intra-atom interactions NBONDS: found 87572 intra-atom interactions NBONDS: found 87568 intra-atom interactions NBONDS: found 87585 intra-atom interactions NBONDS: found 87593 intra-atom interactions NBONDS: found 87607 intra-atom interactions NBONDS: found 87588 intra-atom interactions NBONDS: found 87589 intra-atom interactions NBONDS: found 87595 intra-atom interactions NBONDS: found 87616 intra-atom interactions NBONDS: found 87610 intra-atom interactions NBONDS: found 87608 intra-atom interactions NBONDS: found 87605 intra-atom interactions NBONDS: found 87627 intra-atom interactions NBONDS: found 87641 intra-atom interactions NBONDS: found 87656 intra-atom interactions NBONDS: found 87657 intra-atom interactions NBONDS: found 87662 intra-atom interactions NBONDS: found 87647 intra-atom interactions NBONDS: found 87637 intra-atom interactions NBONDS: found 87617 intra-atom interactions NBONDS: found 87594 intra-atom interactions NBONDS: found 87579 intra-atom interactions NBONDS: found 87557 intra-atom interactions NBONDS: found 87533 intra-atom interactions NBONDS: found 87528 intra-atom interactions NBONDS: found 87578 intra-atom interactions NBONDS: found 87608 intra-atom interactions NBONDS: found 87637 intra-atom interactions NBONDS: found 87665 intra-atom interactions NBONDS: found 87690 intra-atom interactions NBONDS: found 87673 intra-atom interactions NBONDS: found 87668 intra-atom interactions NBONDS: found 87657 intra-atom interactions NBONDS: found 87625 intra-atom interactions NBONDS: found 87598 intra-atom interactions NBONDS: found 87561 intra-atom interactions NBONDS: found 87570 intra-atom interactions NBONDS: found 87602 intra-atom interactions NBONDS: found 87640 intra-atom interactions NBONDS: found 87680 intra-atom interactions NBONDS: found 87710 intra-atom interactions NBONDS: found 87712 intra-atom interactions NBONDS: found 87701 intra-atom interactions NBONDS: found 87680 intra-atom interactions NBONDS: found 87662 intra-atom interactions NBONDS: found 87639 intra-atom interactions NBONDS: found 87582 intra-atom interactions NBONDS: found 87537 intra-atom interactions NBONDS: found 87491 intra-atom interactions NBONDS: found 87538 intra-atom interactions NBONDS: found 87597 intra-atom interactions NBONDS: found 87623 intra-atom interactions NBONDS: found 87659 intra-atom interactions NBONDS: found 87665 intra-atom interactions NBONDS: found 87665 intra-atom interactions NBONDS: found 87663 intra-atom interactions NBONDS: found 87631 intra-atom interactions NBONDS: found 87605 intra-atom interactions NBONDS: found 87575 intra-atom interactions NBONDS: found 87558 intra-atom interactions NBONDS: found 87544 intra-atom interactions NBONDS: found 87558 intra-atom interactions NBONDS: found 87589 intra-atom interactions NBONDS: found 87620 intra-atom interactions NBONDS: found 87634 intra-atom interactions NBONDS: found 87645 intra-atom interactions NBONDS: found 87646 intra-atom interactions NBONDS: found 87642 intra-atom interactions NBONDS: found 87627 intra-atom interactions NBONDS: found 87620 intra-atom interactions NBONDS: found 87604 intra-atom interactions NBONDS: found 87582 intra-atom interactions NBONDS: found 87555 intra-atom interactions NBONDS: found 87540 intra-atom interactions NBONDS: found 87539 intra-atom interactions NBONDS: found 87551 intra-atom interactions NBONDS: found 87570 intra-atom interactions NBONDS: found 87590 intra-atom interactions NBONDS: found 87625 intra-atom interactions NBONDS: found 87647 intra-atom interactions NBONDS: found 87663 intra-atom interactions NBONDS: found 87659 intra-atom interactions NBONDS: found 87648 intra-atom interactions NBONDS: found 87645 intra-atom interactions NBONDS: found 87633 intra-atom interactions NBONDS: found 87604 intra-atom interactions NBONDS: found 87573 intra-atom interactions NBONDS: found 87557 intra-atom interactions NBONDS: found 87547 intra-atom interactions NBONDS: found 87554 intra-atom interactions NBONDS: found 87559 intra-atom interactions NBONDS: found 87580 intra-atom interactions NBONDS: found 87605 intra-atom interactions NBONDS: found 87620 intra-atom interactions NBONDS: found 87632 intra-atom interactions NBONDS: found 87640 intra-atom interactions NBONDS: found 87646 intra-atom interactions NBONDS: found 87644 intra-atom interactions NBONDS: found 87631 intra-atom interactions NBONDS: found 87611 intra-atom interactions NBONDS: found 87591 intra-atom interactions NBONDS: found 87568 intra-atom interactions NBONDS: found 87564 intra-atom interactions NBONDS: found 87568 intra-atom interactions NBONDS: found 87582 intra-atom interactions NBONDS: found 87628 intra-atom interactions NBONDS: found 87636 intra-atom interactions NBONDS: found 87657 intra-atom interactions NBONDS: found 87649 intra-atom interactions NBONDS: found 87644 intra-atom interactions NBONDS: found 87619 intra-atom interactions NBONDS: found 87600 intra-atom interactions NBONDS: found 87601 intra-atom interactions NBONDS: found 87593 intra-atom interactions NBONDS: found 87578 intra-atom interactions NBONDS: found 87579 intra-atom interactions NBONDS: found 87598 intra-atom interactions NBONDS: found 87613 intra-atom interactions NBONDS: found 87634 intra-atom interactions NBONDS: found 87656 intra-atom interactions NBONDS: found 87667 intra-atom interactions NBONDS: found 87663 intra-atom interactions NBONDS: found 87666 intra-atom interactions NBONDS: found 87639 intra-atom interactions NBONDS: found 87626 intra-atom interactions NBONDS: found 87622 intra-atom interactions NBONDS: found 87609 intra-atom interactions NBONDS: found 87597 intra-atom interactions NBONDS: found 87600 intra-atom interactions NBONDS: found 87610 intra-atom interactions NBONDS: found 87607 intra-atom interactions NBONDS: found 87616 intra-atom interactions NBONDS: found 87619 intra-atom interactions NBONDS: found 87645 intra-atom interactions NBONDS: found 87639 intra-atom interactions NBONDS: found 87625 intra-atom interactions NBONDS: found 87599 intra-atom interactions NBONDS: found 87589 intra-atom interactions NBONDS: found 87589 intra-atom interactions NBONDS: found 87600 intra-atom interactions NBONDS: found 87637 intra-atom interactions NBONDS: found 87674 intra-atom interactions NBONDS: found 87683 intra-atom interactions NBONDS: found 87686 intra-atom interactions NBONDS: found 87669 intra-atom interactions NBONDS: found 87625 intra-atom interactions NBONDS: found 87590 intra-atom interactions NBONDS: found 87574 intra-atom interactions NBONDS: found 87571 intra-atom interactions NBONDS: found 87567 intra-atom interactions NBONDS: found 87563 intra-atom interactions NBONDS: found 87579 intra-atom interactions NBONDS: found 87605 intra-atom interactions NBONDS: found 87654 intra-atom interactions NBONDS: found 87681 intra-atom interactions NBONDS: found 87702 intra-atom interactions NBONDS: found 87693 intra-atom interactions NBONDS: found 87666 intra-atom interactions NBONDS: found 87647 intra-atom interactions NBONDS: found 87606 intra-atom interactions NBONDS: found 87574 intra-atom interactions NBONDS: found 87561 intra-atom interactions NBONDS: found 87588 intra-atom interactions NBONDS: found 87616 intra-atom interactions NBONDS: found 87643 intra-atom interactions NBONDS: found 87633 intra-atom interactions NBONDS: found 87630 intra-atom interactions NBONDS: found 87626 intra-atom interactions NBONDS: found 87634 intra-atom interactions NBONDS: found 87616 intra-atom interactions NBONDS: found 87623 intra-atom interactions NBONDS: found 87635 intra-atom interactions NBONDS: found 87631 intra-atom interactions NBONDS: found 87629 intra-atom interactions NBONDS: found 87614 intra-atom interactions NBONDS: found 87603 intra-atom interactions NBONDS: found 87586 intra-atom interactions NBONDS: found 87576 intra-atom interactions NBONDS: found 87571 intra-atom interactions NBONDS: found 87615 intra-atom interactions NBONDS: found 87645 intra-atom interactions NBONDS: found 87670 intra-atom interactions NBONDS: found 87704 intra-atom interactions NBONDS: found 87705 intra-atom interactions NBONDS: found 87717 intra-atom interactions NBONDS: found 87687 intra-atom interactions NBONDS: found 87674 intra-atom interactions NBONDS: found 87646 intra-atom interactions NBONDS: found 87610 intra-atom interactions NBONDS: found 87574 intra-atom interactions NBONDS: found 87564 intra-atom interactions NBONDS: found 87567 intra-atom interactions NBONDS: found 87596 intra-atom interactions NBONDS: found 87632 intra-atom interactions NBONDS: found 87657 intra-atom interactions NBONDS: found 87677 intra-atom interactions NBONDS: found 87679 intra-atom interactions NBONDS: found 87662 intra-atom interactions NBONDS: found 87655 intra-atom interactions NBONDS: found 87640 intra-atom interactions NBONDS: found 87623 intra-atom interactions NBONDS: found 87606 intra-atom interactions NBONDS: found 87578 intra-atom interactions NBONDS: found 87555 intra-atom interactions NBONDS: found 87532 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=16626.982 E(kin)=5700.514 temperature=2363.930 | | Etotal =10926.468 grad(E)=160.547 E(BOND)=7467.077 E(ANGL)=768.002 | | E(DIHE)=7.997 E(IMPR)=2644.997 E(VDW )=38.396 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 22.86382 -0.39074 14.83361 velocity [A/ps] : 0.62122 -1.63312 -2.21179 ang. mom. [amu A/ps] : -11932.06415 -27724.87714 1610.59784 kin. ener. [Kcal/mol] : 8.02720 CNSsolve> CNSsolve> {- some final minimisation -} CNSsolve> minimize powell POWELL> nstep=500 POWELL> drop=40.0 POWELL> nprint=50 POWELL> end POWELL: number of degrees of freedom= 2427 NBONDS: found 87539 intra-atom interactions NBONDS: found 87585 intra-atom interactions NBONDS: found 87630 intra-atom interactions NBONDS: found 87718 intra-atom interactions NBONDS: found 87654 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =915.825 grad(E)=39.436 E(BOND)=96.361 E(ANGL)=745.215 | | E(DIHE)=7.952 E(IMPR)=21.867 E(VDW )=44.429 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> print thres=0.02 bonds (atom-i |atom-j ) dist. equil. delta energy const. ( 13 NE | 13 HE ) 1.178 0.980 0.198 39.253 1000.000 ( 44 NE | 44 HE ) 1.159 0.980 0.179 32.007 1000.000 ( 75 NE | 75 HE ) 1.135 0.980 0.155 24.121 1000.000 Number of violations greater 0.020: 3 RMS deviation= 0.011 CNSsolve> print thres=5. angles (atom-i |atom-j |atom-k ) angle equil. delta energy const. ( 13 CD | 13 NE | 13 HE ) 88.940 118.099 -29.159 129.496 500.000 ( 13 HE | 13 NE | 13 CZ ) 146.829 119.249 27.580 115.855 500.000 ( 44 CD | 44 NE | 44 HE ) 95.368 118.099 -22.731 78.695 500.000 ( 44 HE | 44 NE | 44 CZ ) 140.551 119.249 21.302 69.116 500.000 ( 75 CD | 75 NE | 75 HE ) 88.105 118.099 -29.994 137.024 500.000 ( 75 HE | 75 NE | 75 CZ ) 145.947 119.249 26.698 108.563 500.000 Number of violations greater 5.000: 6 RMS deviation= 1.623 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> fix selection=( none ) end SELRPN: 0 atoms have been selected out of 1586 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 0 atoms have been selected out of 1586 SHOW: zero atoms selected NEXTCD: condition evaluated as true SELRPN: 0 atoms have been selected out of 1586 CNSsolve> CNSsolve> if (&set_bfactor=true) then NEXTCD: condition evaluated as false CNSsolve> do (b=&bfactor) ( all ) CNSsolve> else CNSsolve> show ave(b) (known and not(store1)) SELRPN: 777 atoms have been selected out of 1586 SHOW: average of selected elements = 0.000000 CNSsolve> do (b=$result) (store1 and (attr b < 0.01)) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> end if CNSsolve> CNSsolve> if (&set_occupancy=true) then NEXTCD: condition evaluated as false CNSsolve> do (q=&occupancy) ( all ) CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 809 atoms have been selected out of 1586 SHOW: sum over selected elements = 809.000000 NEXTCD: condition evaluated as false CNSsolve> CNSsolve> set remarks=reset end CNSsolve> CNSsolve> buffer message BUFFER> to=remarks BUFFER> dump BUFFER> end CNSsolve> CNSsolve> write coordinates output=&coordinate_outfile end ASSFIL: file 1xxx_1_cns.pdb opened. CNSsolve> CNSsolve>stop ============================================================ Maximum dynamic memory allocation: 980484 bytes Maximum dynamic memory overhead: 864 bytes Program started at: 08:42:20 on 12-Jan-04 Program stopped at: 08:42:43 on 12-Jan-04 CPU time used: 22.7000 seconds ============================================================