============================================================ | | | Crystallography & NMR System (CNS) | | CNSsolve | | | ============================================================ Version: 1.1 Status: General release ============================================================ Written by: A.T.Brunger, P.D.Adams, G.M.Clore, W.L.DeLano, P.Gros, R.W.Grosse-Kunstleve, J.-S.Jiang, J.Kuszewski, M.Nilges, N.S.Pannu, R.J.Read, L.M.Rice, T.Simonson, G.L.Warren. Copyright (c) 1997-2001 Yale University ============================================================ Running on machine: cesg-master.biochem.wisc.edu (Linux,32-bit) Program started by: lytle Program started at: 08:43:06 on 12-Jan-04 ============================================================ FFT3C: Using FFTPACK4.1 CNSsolve>define( DEFINE>{* selection of atoms other than hydrogens for which coordinates DEFINE> will be generated *} DEFINE>{* to generate coordinates for all unknown atoms use: (not(known)) *} DEFINE>{===>} atom_build=(not(known)); DEFINE>{============================= output files ================================} DEFINE> DEFINE>{* input coordinate file *} DEFINE>{===>} coordinate_infile="1xxx_2.pdb"; DEFINE> DEFINE>{* output coordinate file *} DEFINE>{===>} coordinate_outfile="1xxx_2_cns.pdb"; DEFINE>) CNSsolve> CNSsolve> checkversion 1.1 Program version= 1.1 File version= 1.1 CNSsolve> CNSsolve> evaluate ($log_level=verbose) Assuming literal string "VERBOSE" EVALUATE: symbol $LOG_LEVEL set to "VERBOSE" (string) CNSsolve> evaluate ($par_nonbonded="PROLSQ") EVALUATE: symbol $PAR_NONBONDED set to "PROLSQ" (string) CNSsolve> CNSsolve> !@generateProtonsJFD.inp CNSsolve> CNSsolve>{===========================================================================} CNSsolve>{ things below this line do not need to be changed } CNSsolve>{===========================================================================} CNSsolve> CNSsolve>remarks changed Tue Sep 2 09:48:07 CDT 2003 CNSsolve>remarks by jfd to include a fes residue CNSsolve> CNSsolve>!@generate_tmoc.inp CNSsolve> CNSsolve>topology reset end CNSsolve>structure reset end Status of internal molecular topology database: -> NATOM= 0(MAXA= 40000) NBOND= 0(MAXB= 40000) -> NTHETA= 0(MAXT= 80000) NGRP= 0(MAXGRP= 40000) -> NPHI= 0(MAXP= 80000) NIMPHI= 0(MAXIMP= 40000) -> NNB= 0(MAXNB= 40000) CNSsolve> CNSsolve>topology RTFRDR>{===>} @TOPPAR:topallhdg5.3.pro ASSFIL: file /u/volkman/waterrefine/toppar/topallhdg5.3.pro opened. RTFRDR>remark file topallhdg.pro version 5.3 date 23-Sept-02 RTFRDR>remark for file parallhdg.pro version 5.3 date 13-Feb-02 or later RTFRDR>remark Geometric energy function parameters for distance geometry and RTFRDR>remark simulated annealing. RTFRDR>remark Author: Michael Nilges, EMBL Heidelberg; Institut Pasteur, Paris RTFRDR>remark This file contains modifications from M. Williams, UCL London RTFRDR>remark Last modification 16-Sept-02 RTFRDR> RTFRDR>set echo off message off end RTFRDR>end CNSsolve> CNSsolve>! no chain id. CNSsolve>segment name=" " SEGMENT> chain CHAIN> @TOPPAR:topallhdg5.3.pep CHAIN>REMARKS TOPH19.pep -MACRO for protein sequence CHAIN>SET ECHO=FALSE END CHAIN> sequence SEQUENCE> @1xxx.seq SEQUENCE>GLU SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) = end SEGMNT: 101 residues were inserted into segment " " CHAIN> end SEGMENT>end Status of internal molecular topology database: -> NATOM= 1586(MAXA= 40000) NBOND= 1598(MAXB= 40000) -> NTHETA= 2925(MAXT= 80000) NGRP= 103(MAXGRP= 40000) -> NPHI= 2500(MAXP= 80000) NIMPHI= 774(MAXIMP= 40000) -> NNB= 618(MAXNB= 40000) CNSsolve> CNSsolve>! turn peptide from trans to cis CNSsolve>!patch CISP reference=nil=( resid 80 ) end CNSsolve> CNSsolve>coor @&coordinate_infile COOR>HEADER Structures from CYANA 11-01-2004 COOR>REMARK model 2 COOR>ATOM 1840 N GLU A 1 1.325 0.000 0.000 1.00 0.00 %READC-ERR: atom 1 GLU HN not found in molecular structure %READC-ERR: atom 1 GLU 2HB not found in molecular structure %READC-ERR: atom 1 GLU 3HB not found in molecular structure %READC-ERR: atom 1 GLU QB not found in molecular structure %READC-ERR: atom 1 GLU 2HG not found in molecular structure %READC-ERR: atom 1 GLU 3HG not found in molecular structure %READC-ERR: atom 1 GLU QG not found in molecular structure %READC-ERR: atom 2 ALA QB not found in molecular structure %READC-ERR: atom 2 ALA 1HB not found in molecular structure %READC-ERR: atom 2 ALA 2HB not found in molecular structure %READC-ERR: atom 2 ALA 3HB not found in molecular structure %READC-ERR: atom 3 GLU 2HB not found in molecular structure %READC-ERR: atom 3 GLU 3HB not found in molecular structure %READC-ERR: atom 3 GLU QB not found in molecular structure %READC-ERR: atom 3 GLU 2HG not found in molecular structure %READC-ERR: atom 3 GLU 3HG not found in molecular structure %READC-ERR: atom 3 GLU QG not found in molecular structure %READC-ERR: atom 4 VAL QG1 not found in molecular structure %READC-ERR: atom 4 VAL QG2 not found in molecular structure %READC-ERR: atom 4 VAL 1HG1 not found in molecular structure %READC-ERR: atom 4 VAL 2HG1 not found in molecular structure %READC-ERR: atom 4 VAL 3HG1 not found in molecular structure %READC-ERR: atom 4 VAL 1HG2 not found in molecular structure %READC-ERR: atom 4 VAL 2HG2 not found in molecular structure %READC-ERR: atom 4 VAL 3HG2 not found in molecular structure %READC-ERR: atom 4 VAL QQG not found in molecular structure %READC-ERR: atom 5 HIS 2HB not found in molecular structure %READC-ERR: atom 5 HIS 3HB not found in molecular structure %READC-ERR: atom 5 HIS QB not found in molecular structure %READC-ERR: atom 6 ASN 2HB not found in molecular structure %READC-ERR: atom 6 ASN 3HB not found in molecular structure %READC-ERR: atom 6 ASN QB not found in molecular structure %READC-ERR: atom 6 ASN 1HD2 not found in molecular structure %READC-ERR: atom 6 ASN 2HD2 not found in molecular structure %READC-ERR: atom 6 ASN QD2 not found in molecular structure %READC-ERR: atom 7 GLN 2HB not found in molecular structure %READC-ERR: atom 7 GLN 3HB not found in molecular structure %READC-ERR: atom 7 GLN QB not found in molecular structure %READC-ERR: atom 7 GLN 2HG not found in molecular structure %READC-ERR: atom 7 GLN 3HG not found in molecular structure %READC-ERR: atom 7 GLN QG not found in molecular structure %READC-ERR: atom 7 GLN 1HE2 not found in molecular structure %READC-ERR: atom 7 GLN 2HE2 not found in molecular structure %READC-ERR: atom 7 GLN QE2 not found in molecular structure %READC-ERR: atom 8 LEU 2HB not found in molecular structure %READC-ERR: atom 8 LEU 3HB not found in molecular structure %READC-ERR: atom 8 LEU QB not found in molecular structure %READC-ERR: atom 8 LEU QD1 not found in molecular structure %READC-ERR: atom 8 LEU QD2 not found in molecular structure %READC-ERR: atom 8 LEU 1HD1 not found in molecular structure %READC-ERR: atom 8 LEU 2HD1 not found in molecular structure %READC-ERR: atom 8 LEU 3HD1 not found in molecular structure %READC-ERR: atom 8 LEU 1HD2 not found in molecular structure %READC-ERR: atom 8 LEU 2HD2 not found in molecular structure %READC-ERR: atom 8 LEU 3HD2 not found in molecular structure %READC-ERR: atom 8 LEU QQD not found in molecular structure %READC-ERR: atom 9 GLU 2HB not found in molecular structure %READC-ERR: atom 9 GLU 3HB not found in molecular structure %READC-ERR: atom 9 GLU QB not found in molecular structure %READC-ERR: atom 9 GLU 2HG not found in molecular structure %READC-ERR: atom 9 GLU 3HG not found in molecular structure %READC-ERR: atom 9 GLU QG not found in molecular structure %READC-ERR: atom 10 ILE QG2 not found in molecular structure %READC-ERR: atom 10 ILE 1HG2 not found in molecular structure %READC-ERR: atom 10 ILE 2HG2 not found in molecular structure %READC-ERR: atom 10 ILE 3HG2 not found in molecular structure %READC-ERR: atom 10 ILE 2HG1 not found in molecular structure %READC-ERR: atom 10 ILE 3HG1 not found in molecular structure %READC-ERR: atom 10 ILE QG1 not found in molecular structure %READC-ERR: atom 10 ILE QD1 not found in molecular structure %READC-ERR: atom 10 ILE 1HD1 not found in molecular structure %READC-ERR: atom 10 ILE 2HD1 not found in molecular structure %READC-ERR: atom 10 ILE 3HD1 not found in molecular structure %READC-ERR: atom 11 LYS 2HB not found in molecular structure %READC-ERR: atom 11 LYS 3HB not found in molecular structure %READC-ERR: atom 11 LYS QB not found in molecular structure %READC-ERR: atom 11 LYS 2HG not found in molecular structure %READC-ERR: atom 11 LYS 3HG not found in molecular structure %READC-ERR: atom 11 LYS QG not found in molecular structure %READC-ERR: atom 11 LYS 2HD not found in molecular structure %READC-ERR: atom 11 LYS 3HD not found in molecular structure %READC-ERR: atom 11 LYS QD not found in molecular structure %READC-ERR: atom 11 LYS 2HE not found in molecular structure %READC-ERR: atom 11 LYS 3HE not found in molecular structure %READC-ERR: atom 11 LYS QE not found in molecular structure %READC-ERR: atom 11 LYS 1HZ not found in molecular structure %READC-ERR: atom 11 LYS 2HZ not found in molecular structure %READC-ERR: atom 11 LYS 3HZ not found in molecular structure %READC-ERR: atom 11 LYS QZ not found in molecular structure %READC-ERR: atom 12 PHE 2HB not found in molecular structure %READC-ERR: atom 12 PHE 3HB not found in molecular structure %READC-ERR: atom 12 PHE QB not found in molecular structure %READC-ERR: atom 12 PHE QD not found in molecular structure %READC-ERR: atom 12 PHE QE not found in molecular structure %READC-ERR: atom 12 PHE QR not found in molecular structure %READC-ERR: atom 13 ARG 2HB not found in molecular structure %READC-ERR: atom 13 ARG 3HB not found in molecular structure %READC-ERR: atom 13 ARG QB not found in molecular structure %READC-ERR: atom 13 ARG 2HG not found in molecular structure %READC-ERR: atom 13 ARG 3HG not found in molecular structure %READC-ERR: atom 13 ARG QG not found in molecular structure %READC-ERR: atom 13 ARG 2HD not found in molecular structure %READC-ERR: atom 13 ARG 3HD not found in molecular structure %READC-ERR: atom 13 ARG QD not found in molecular structure %READC-ERR: atom 13 ARG 1HH1 not found in molecular structure %READC-ERR: atom 13 ARG 2HH1 not found in molecular structure %READC-ERR: atom 13 ARG QH1 not found in molecular structure %READC-ERR: atom 13 ARG 1HH2 not found in molecular structure %READC-ERR: atom 13 ARG 2HH2 not found in molecular structure %READC-ERR: atom 13 ARG QH2 not found in molecular structure %READC-ERR: atom 14 LEU 2HB not found in molecular structure %READC-ERR: atom 14 LEU 3HB not found in molecular structure %READC-ERR: atom 14 LEU QB not found in molecular structure %READC-ERR: atom 14 LEU QD1 not found in molecular structure %READC-ERR: atom 14 LEU QD2 not found in molecular structure %READC-ERR: atom 14 LEU 1HD1 not found in molecular structure %READC-ERR: atom 14 LEU 2HD1 not found in molecular structure %READC-ERR: atom 14 LEU 3HD1 not found in molecular structure %READC-ERR: atom 14 LEU 1HD2 not found in molecular structure %READC-ERR: atom 14 LEU 2HD2 not found in molecular structure %READC-ERR: atom 14 LEU 3HD2 not found in molecular structure %READC-ERR: atom 14 LEU QQD not found in molecular structure %READC-ERR: atom 15 THR QG2 not found in molecular structure %READC-ERR: atom 15 THR 1HG2 not found in molecular structure %READC-ERR: atom 15 THR 2HG2 not found in molecular structure %READC-ERR: atom 15 THR 3HG2 not found in molecular structure %READC-ERR: atom 16 ASP 2HB not found in molecular structure %READC-ERR: atom 16 ASP 3HB not found in molecular structure %READC-ERR: atom 16 ASP QB not found in molecular structure %READC-ERR: atom 17 GLY 1HA not found in molecular structure %READC-ERR: atom 17 GLY 2HA not found in molecular structure %READC-ERR: atom 17 GLY QA not found in molecular structure %READC-ERR: atom 18 SER 2HB not found in molecular structure %READC-ERR: atom 18 SER 3HB not found in molecular structure %READC-ERR: atom 18 SER QB not found in molecular structure %READC-ERR: atom 19 ASP 2HB not found in molecular structure %READC-ERR: atom 19 ASP 3HB not found in molecular structure %READC-ERR: atom 19 ASP QB not found in molecular structure %READC-ERR: atom 20 ILE QG2 not found in molecular structure %READC-ERR: atom 20 ILE 1HG2 not found in molecular structure %READC-ERR: atom 20 ILE 2HG2 not found in molecular structure %READC-ERR: atom 20 ILE 3HG2 not found in molecular structure %READC-ERR: atom 20 ILE 2HG1 not found in molecular structure %READC-ERR: atom 20 ILE 3HG1 not found in molecular structure %READC-ERR: atom 20 ILE QG1 not found in molecular structure %READC-ERR: atom 20 ILE QD1 not found in molecular structure %READC-ERR: atom 20 ILE 1HD1 not found in molecular structure %READC-ERR: atom 20 ILE 2HD1 not found in molecular structure %READC-ERR: atom 20 ILE 3HD1 not found in molecular structure %READC-ERR: atom 21 GLY 1HA not found in molecular structure %READC-ERR: atom 21 GLY 2HA not found in molecular structure %READC-ERR: atom 21 GLY QA not found in molecular structure %READC-ERR: atom 22 PRO 2HB not found in molecular structure %READC-ERR: atom 22 PRO 3HB not found in molecular structure %READC-ERR: atom 22 PRO QB not found in molecular structure %READC-ERR: atom 22 PRO 2HG not found in molecular structure %READC-ERR: atom 22 PRO 3HG not found in molecular structure %READC-ERR: atom 22 PRO QG not found in molecular structure %READC-ERR: atom 22 PRO 2HD not found in molecular structure %READC-ERR: atom 22 PRO 3HD not found in molecular structure %READC-ERR: atom 22 PRO QD not found in molecular structure %READC-ERR: atom 23 LYS 2HB not found in molecular structure %READC-ERR: atom 23 LYS 3HB not found in molecular structure %READC-ERR: atom 23 LYS QB not found in molecular structure %READC-ERR: atom 23 LYS 2HG not found in molecular structure %READC-ERR: atom 23 LYS 3HG not found in molecular structure %READC-ERR: atom 23 LYS QG not found in molecular structure %READC-ERR: atom 23 LYS 2HD not found in molecular structure %READC-ERR: atom 23 LYS 3HD not found in molecular structure %READC-ERR: atom 23 LYS QD not found in molecular structure %READC-ERR: atom 23 LYS 2HE not found in molecular structure %READC-ERR: atom 23 LYS 3HE not found in molecular structure %READC-ERR: atom 23 LYS QE not found in molecular structure %READC-ERR: atom 23 LYS 1HZ not found in molecular structure %READC-ERR: atom 23 LYS 2HZ not found in molecular structure %READC-ERR: atom 23 LYS 3HZ not found in molecular structure %READC-ERR: atom 23 LYS QZ not found in molecular structure %READC-ERR: atom 24 ALA QB not found in molecular structure %READC-ERR: atom 24 ALA 1HB not found in molecular structure %READC-ERR: atom 24 ALA 2HB not found in molecular structure %READC-ERR: atom 24 ALA 3HB not found in molecular structure %READC-ERR: atom 25 PHE 2HB not found in molecular structure %READC-ERR: atom 25 PHE 3HB not found in molecular structure %READC-ERR: atom 25 PHE QB not found in molecular structure %READC-ERR: atom 25 PHE QD not found in molecular structure %READC-ERR: atom 25 PHE QE not found in molecular structure %READC-ERR: atom 25 PHE QR not found in molecular structure %READC-ERR: atom 26 PRO 2HB not found in molecular structure %READC-ERR: atom 26 PRO 3HB not found in molecular structure %READC-ERR: atom 26 PRO QB not found in molecular structure %READC-ERR: atom 26 PRO 2HG not found in molecular structure %READC-ERR: atom 26 PRO 3HG not found in molecular structure %READC-ERR: atom 26 PRO QG not found in molecular structure %READC-ERR: atom 26 PRO 2HD not found in molecular structure %READC-ERR: atom 26 PRO 3HD not found in molecular structure %READC-ERR: atom 26 PRO QD not found in molecular structure %READC-ERR: atom 27 ASP 2HB not found in molecular structure %READC-ERR: atom 27 ASP 3HB not found in molecular structure %READC-ERR: atom 27 ASP QB not found in molecular structure %READC-ERR: atom 28 ALA QB not found in molecular structure %READC-ERR: atom 28 ALA 1HB not found in molecular structure %READC-ERR: atom 28 ALA 2HB not found in molecular structure %READC-ERR: atom 28 ALA 3HB not found in molecular structure %READC-ERR: atom 29 THR QG2 not found in molecular structure %READC-ERR: atom 29 THR 1HG2 not found in molecular structure %READC-ERR: atom 29 THR 2HG2 not found in molecular structure %READC-ERR: atom 29 THR 3HG2 not found in molecular structure %READC-ERR: atom 30 THR QG2 not found in molecular structure %READC-ERR: atom 30 THR 1HG2 not found in molecular structure %READC-ERR: atom 30 THR 2HG2 not found in molecular structure %READC-ERR: atom 30 THR 3HG2 not found in molecular structure %READC-ERR: atom 31 VAL QG1 not found in molecular structure %READC-ERR: atom 31 VAL QG2 not found in molecular structure %READC-ERR: atom 31 VAL 1HG1 not found in molecular structure %READC-ERR: atom 31 VAL 2HG1 not found in molecular structure %READC-ERR: atom 31 VAL 3HG1 not found in molecular structure %READC-ERR: atom 31 VAL 1HG2 not found in molecular structure %READC-ERR: atom 31 VAL 2HG2 not found in molecular structure %READC-ERR: atom 31 VAL 3HG2 not found in molecular structure %READC-ERR: atom 31 VAL QQG not found in molecular structure %READC-ERR: atom 32 SER 2HB not found in molecular structure %READC-ERR: atom 32 SER 3HB not found in molecular structure %READC-ERR: atom 32 SER QB not found in molecular structure %READC-ERR: atom 33 ALA QB not found in molecular structure %READC-ERR: atom 33 ALA 1HB not found in molecular structure %READC-ERR: atom 33 ALA 2HB not found in molecular structure %READC-ERR: atom 33 ALA 3HB not found in molecular structure %READC-ERR: atom 34 LEU 2HB not found in molecular structure %READC-ERR: atom 34 LEU 3HB not found in molecular structure %READC-ERR: atom 34 LEU QB not found in molecular structure %READC-ERR: atom 34 LEU QD1 not found in molecular structure %READC-ERR: atom 34 LEU QD2 not found in molecular structure %READC-ERR: atom 34 LEU 1HD1 not found in molecular structure %READC-ERR: atom 34 LEU 2HD1 not found in molecular structure %READC-ERR: atom 34 LEU 3HD1 not found in molecular structure %READC-ERR: atom 34 LEU 1HD2 not found in molecular structure %READC-ERR: atom 34 LEU 2HD2 not found in molecular structure %READC-ERR: atom 34 LEU 3HD2 not found in molecular structure %READC-ERR: atom 34 LEU QQD not found in molecular structure %READC-ERR: atom 35 LYS 2HB not found in molecular structure %READC-ERR: atom 35 LYS 3HB not found in molecular structure %READC-ERR: atom 35 LYS QB not found in molecular structure %READC-ERR: atom 35 LYS 2HG not found in molecular structure %READC-ERR: atom 35 LYS 3HG not found in molecular structure %READC-ERR: atom 35 LYS QG not found in molecular structure %READC-ERR: atom 35 LYS 2HD not found in molecular structure %READC-ERR: atom 35 LYS 3HD not found in molecular structure %READC-ERR: atom 35 LYS QD not found in molecular structure %READC-ERR: atom 35 LYS 2HE not found in molecular structure %READC-ERR: atom 35 LYS 3HE not found in molecular structure %READC-ERR: atom 35 LYS QE not found in molecular structure %READC-ERR: atom 35 LYS 1HZ not found in molecular structure %READC-ERR: atom 35 LYS 2HZ not found in molecular structure %READC-ERR: atom 35 LYS 3HZ not found in molecular structure %READC-ERR: atom 35 LYS QZ not found in molecular structure %READC-ERR: atom 36 GLU 2HB not found in molecular structure %READC-ERR: atom 36 GLU 3HB not found in molecular structure %READC-ERR: atom 36 GLU QB not found in molecular structure %READC-ERR: atom 36 GLU 2HG not found in molecular structure %READC-ERR: atom 36 GLU 3HG not found in molecular structure %READC-ERR: atom 36 GLU QG not found in molecular structure %READC-ERR: atom 37 THR QG2 not found in molecular structure %READC-ERR: atom 37 THR 1HG2 not found in molecular structure %READC-ERR: atom 37 THR 2HG2 not found in molecular structure %READC-ERR: atom 37 THR 3HG2 not found in molecular structure %READC-ERR: atom 38 VAL QG1 not found in molecular structure %READC-ERR: atom 38 VAL QG2 not found in molecular structure %READC-ERR: atom 38 VAL 1HG1 not found in molecular structure %READC-ERR: atom 38 VAL 2HG1 not found in molecular structure %READC-ERR: atom 38 VAL 3HG1 not found in molecular structure %READC-ERR: atom 38 VAL 1HG2 not found in molecular structure %READC-ERR: atom 38 VAL 2HG2 not found in molecular structure %READC-ERR: atom 38 VAL 3HG2 not found in molecular structure %READC-ERR: atom 38 VAL QQG not found in molecular structure %READC-ERR: atom 39 ILE QG2 not found in molecular structure %READC-ERR: atom 39 ILE 1HG2 not found in molecular structure %READC-ERR: atom 39 ILE 2HG2 not found in molecular structure %READC-ERR: atom 39 ILE 3HG2 not found in molecular structure %READC-ERR: atom 39 ILE 2HG1 not found in molecular structure %READC-ERR: atom 39 ILE 3HG1 not found in molecular structure %READC-ERR: atom 39 ILE QG1 not found in molecular structure %READC-ERR: atom 39 ILE QD1 not found in molecular structure %READC-ERR: atom 39 ILE 1HD1 not found in molecular structure %READC-ERR: atom 39 ILE 2HD1 not found in molecular structure %READC-ERR: atom 39 ILE 3HD1 not found in molecular structure %READC-ERR: atom 40 SER 2HB not found in molecular structure %READC-ERR: atom 40 SER 3HB not found in molecular structure %READC-ERR: atom 40 SER QB not found in molecular structure %READC-ERR: atom 41 GLU 2HB not found in molecular structure %READC-ERR: atom 41 GLU 3HB not found in molecular structure %READC-ERR: atom 41 GLU QB not found in molecular structure %READC-ERR: atom 41 GLU 2HG not found in molecular structure %READC-ERR: atom 41 GLU 3HG not found in molecular structure %READC-ERR: atom 41 GLU QG not found in molecular structure %READC-ERR: atom 42 TRP 2HB not found in molecular structure %READC-ERR: atom 42 TRP 3HB not found in molecular structure %READC-ERR: atom 42 TRP QB not found in molecular structure %READC-ERR: atom 43 PRO 2HB not found in molecular structure %READC-ERR: atom 43 PRO 3HB not found in molecular structure %READC-ERR: atom 43 PRO QB not found in molecular structure %READC-ERR: atom 43 PRO 2HG not found in molecular structure %READC-ERR: atom 43 PRO 3HG not found in molecular structure %READC-ERR: atom 43 PRO QG not found in molecular structure %READC-ERR: atom 43 PRO 2HD not found in molecular structure %READC-ERR: atom 43 PRO 3HD not found in molecular structure %READC-ERR: atom 43 PRO QD not found in molecular structure %READC-ERR: atom 44 ARG 2HB not found in molecular structure %READC-ERR: atom 44 ARG 3HB not found in molecular structure %READC-ERR: atom 44 ARG QB not found in molecular structure %READC-ERR: atom 44 ARG 2HG not found in molecular structure %READC-ERR: atom 44 ARG 3HG not found in molecular structure %READC-ERR: atom 44 ARG QG not found in molecular structure %READC-ERR: atom 44 ARG 2HD not found in molecular structure %READC-ERR: atom 44 ARG 3HD not found in molecular structure %READC-ERR: atom 44 ARG QD not found in molecular structure %READC-ERR: atom 44 ARG 1HH1 not found in molecular structure %READC-ERR: atom 44 ARG 2HH1 not found in molecular structure %READC-ERR: atom 44 ARG QH1 not found in molecular structure %READC-ERR: atom 44 ARG 1HH2 not found in molecular structure %READC-ERR: atom 44 ARG 2HH2 not found in molecular structure %READC-ERR: atom 44 ARG QH2 not found in molecular structure %READC-ERR: atom 45 GLU 2HB not found in molecular structure %READC-ERR: atom 45 GLU 3HB not found in molecular structure %READC-ERR: atom 45 GLU QB not found in molecular structure %READC-ERR: atom 45 GLU 2HG not found in molecular structure %READC-ERR: atom 45 GLU 3HG not found in molecular structure %READC-ERR: atom 45 GLU QG not found in molecular structure %READC-ERR: atom 46 LYS 2HB not found in molecular structure %READC-ERR: atom 46 LYS 3HB not found in molecular structure %READC-ERR: atom 46 LYS QB not found in molecular structure %READC-ERR: atom 46 LYS 2HG not found in molecular structure %READC-ERR: atom 46 LYS 3HG not found in molecular structure %READC-ERR: atom 46 LYS QG not found in molecular structure %READC-ERR: atom 46 LYS 2HD not found in molecular structure %READC-ERR: atom 46 LYS 3HD not found in molecular structure %READC-ERR: atom 46 LYS QD not found in molecular structure %READC-ERR: atom 46 LYS 2HE not found in molecular structure %READC-ERR: atom 46 LYS 3HE not found in molecular structure %READC-ERR: atom 46 LYS QE not found in molecular structure %READC-ERR: atom 46 LYS 1HZ not found in molecular structure %READC-ERR: atom 46 LYS 2HZ not found in molecular structure %READC-ERR: atom 46 LYS 3HZ not found in molecular structure %READC-ERR: atom 46 LYS QZ not found in molecular structure %READC-ERR: atom 47 GLU 2HB not found in molecular structure %READC-ERR: atom 47 GLU 3HB not found in molecular structure %READC-ERR: atom 47 GLU QB not found in molecular structure %READC-ERR: atom 47 GLU 2HG not found in molecular structure %READC-ERR: atom 47 GLU 3HG not found in molecular structure %READC-ERR: atom 47 GLU QG not found in molecular structure %READC-ERR: atom 48 ASN 2HB not found in molecular structure %READC-ERR: atom 48 ASN 3HB not found in molecular structure %READC-ERR: atom 48 ASN QB not found in molecular structure %READC-ERR: atom 48 ASN 1HD2 not found in molecular structure %READC-ERR: atom 48 ASN 2HD2 not found in molecular structure %READC-ERR: atom 48 ASN QD2 not found in molecular structure %READC-ERR: atom 49 GLY 1HA not found in molecular structure %READC-ERR: atom 49 GLY 2HA not found in molecular structure %READC-ERR: atom 49 GLY QA not found in molecular structure %READC-ERR: atom 50 PRO 2HB not found in molecular structure %READC-ERR: atom 50 PRO 3HB not found in molecular structure %READC-ERR: atom 50 PRO QB not found in molecular structure %READC-ERR: atom 50 PRO 2HG not found in molecular structure %READC-ERR: atom 50 PRO 3HG not found in molecular structure %READC-ERR: atom 50 PRO QG not found in molecular structure %READC-ERR: atom 50 PRO 2HD not found in molecular structure %READC-ERR: atom 50 PRO 3HD not found in molecular structure %READC-ERR: atom 50 PRO QD not found in molecular structure %READC-ERR: atom 51 LYS 2HB not found in molecular structure %READC-ERR: atom 51 LYS 3HB not found in molecular structure %READC-ERR: atom 51 LYS QB not found in molecular structure %READC-ERR: atom 51 LYS 2HG not found in molecular structure %READC-ERR: atom 51 LYS 3HG not found in molecular structure %READC-ERR: atom 51 LYS QG not found in molecular structure %READC-ERR: atom 51 LYS 2HD not found in molecular structure %READC-ERR: atom 51 LYS 3HD not found in molecular structure %READC-ERR: atom 51 LYS QD not found in molecular structure %READC-ERR: atom 51 LYS 2HE not found in molecular structure %READC-ERR: atom 51 LYS 3HE not found in molecular structure %READC-ERR: atom 51 LYS QE not found in molecular structure %READC-ERR: atom 51 LYS 1HZ not found in molecular structure %READC-ERR: atom 51 LYS 2HZ not found in molecular structure %READC-ERR: atom 51 LYS 3HZ not found in molecular structure %READC-ERR: atom 51 LYS QZ not found in molecular structure %READC-ERR: atom 52 THR QG2 not found in molecular structure %READC-ERR: atom 52 THR 1HG2 not found in molecular structure %READC-ERR: atom 52 THR 2HG2 not found in molecular structure %READC-ERR: atom 52 THR 3HG2 not found in molecular structure %READC-ERR: atom 53 VAL QG1 not found in molecular structure %READC-ERR: atom 53 VAL QG2 not found in molecular structure %READC-ERR: atom 53 VAL 1HG1 not found in molecular structure %READC-ERR: atom 53 VAL 2HG1 not found in molecular structure %READC-ERR: atom 53 VAL 3HG1 not found in molecular structure %READC-ERR: atom 53 VAL 1HG2 not found in molecular structure %READC-ERR: atom 53 VAL 2HG2 not found in molecular structure %READC-ERR: atom 53 VAL 3HG2 not found in molecular structure %READC-ERR: atom 53 VAL QQG not found in molecular structure %READC-ERR: atom 54 LYS 2HB not found in molecular structure %READC-ERR: atom 54 LYS 3HB not found in molecular structure %READC-ERR: atom 54 LYS QB not found in molecular structure %READC-ERR: atom 54 LYS 2HG not found in molecular structure %READC-ERR: atom 54 LYS 3HG not found in molecular structure %READC-ERR: atom 54 LYS QG not found in molecular structure %READC-ERR: atom 54 LYS 2HD not found in molecular structure %READC-ERR: atom 54 LYS 3HD not found in molecular structure %READC-ERR: atom 54 LYS QD not found in molecular structure %READC-ERR: atom 54 LYS 2HE not found in molecular structure %READC-ERR: atom 54 LYS 3HE not found in molecular structure %READC-ERR: atom 54 LYS QE not found in molecular structure %READC-ERR: atom 54 LYS 1HZ not found in molecular structure %READC-ERR: atom 54 LYS 2HZ not found in molecular structure %READC-ERR: atom 54 LYS 3HZ not found in molecular structure %READC-ERR: atom 54 LYS QZ not found in molecular structure %READC-ERR: atom 55 GLU 2HB not found in molecular structure %READC-ERR: atom 55 GLU 3HB not found in molecular structure %READC-ERR: atom 55 GLU QB not found in molecular structure %READC-ERR: atom 55 GLU 2HG not found in molecular structure %READC-ERR: atom 55 GLU 3HG not found in molecular structure %READC-ERR: atom 55 GLU QG not found in molecular structure %READC-ERR: atom 56 VAL QG1 not found in molecular structure %READC-ERR: atom 56 VAL QG2 not found in molecular structure %READC-ERR: atom 56 VAL 1HG1 not found in molecular structure %READC-ERR: atom 56 VAL 2HG1 not found in molecular structure %READC-ERR: atom 56 VAL 3HG1 not found in molecular structure %READC-ERR: atom 56 VAL 1HG2 not found in molecular structure %READC-ERR: atom 56 VAL 2HG2 not found in molecular structure %READC-ERR: atom 56 VAL 3HG2 not found in molecular structure %READC-ERR: atom 56 VAL QQG not found in molecular structure %READC-ERR: atom 57 LYS 2HB not found in molecular structure %READC-ERR: atom 57 LYS 3HB not found in molecular structure %READC-ERR: atom 57 LYS QB not found in molecular structure %READC-ERR: atom 57 LYS 2HG not found in molecular structure %READC-ERR: atom 57 LYS 3HG not found in molecular structure %READC-ERR: atom 57 LYS QG not found in molecular structure %READC-ERR: atom 57 LYS 2HD not found in molecular structure %READC-ERR: atom 57 LYS 3HD not found in molecular structure %READC-ERR: atom 57 LYS QD not found in molecular structure %READC-ERR: atom 57 LYS 2HE not found in molecular structure %READC-ERR: atom 57 LYS 3HE not found in molecular structure %READC-ERR: atom 57 LYS QE not found in molecular structure %READC-ERR: atom 57 LYS 1HZ not found in molecular structure %READC-ERR: atom 57 LYS 2HZ not found in molecular structure %READC-ERR: atom 57 LYS 3HZ not found in molecular structure %READC-ERR: atom 57 LYS QZ not found in molecular structure %READC-ERR: atom 58 LEU 2HB not found in molecular structure %READC-ERR: atom 58 LEU 3HB not found in molecular structure %READC-ERR: atom 58 LEU QB not found in molecular structure %READC-ERR: atom 58 LEU QD1 not found in molecular structure %READC-ERR: atom 58 LEU QD2 not found in molecular structure %READC-ERR: atom 58 LEU 1HD1 not found in molecular structure %READC-ERR: atom 58 LEU 2HD1 not found in molecular structure %READC-ERR: atom 58 LEU 3HD1 not found in molecular structure %READC-ERR: atom 58 LEU 1HD2 not found in molecular structure %READC-ERR: atom 58 LEU 2HD2 not found in molecular structure %READC-ERR: atom 58 LEU 3HD2 not found in molecular structure %READC-ERR: atom 58 LEU QQD not found in molecular structure %READC-ERR: atom 59 ILE QG2 not found in molecular structure %READC-ERR: atom 59 ILE 1HG2 not found in molecular structure %READC-ERR: atom 59 ILE 2HG2 not found in molecular structure %READC-ERR: atom 59 ILE 3HG2 not found in molecular structure %READC-ERR: atom 59 ILE 2HG1 not found in molecular structure %READC-ERR: atom 59 ILE 3HG1 not found in molecular structure %READC-ERR: atom 59 ILE QG1 not found in molecular structure %READC-ERR: atom 59 ILE QD1 not found in molecular structure %READC-ERR: atom 59 ILE 1HD1 not found in molecular structure %READC-ERR: atom 59 ILE 2HD1 not found in molecular structure %READC-ERR: atom 59 ILE 3HD1 not found in molecular structure %READC-ERR: atom 60 SER 2HB not found in molecular structure %READC-ERR: atom 60 SER 3HB not found in molecular structure %READC-ERR: atom 60 SER QB not found in molecular structure %READC-ERR: atom 61 ALA QB not found in molecular structure %READC-ERR: atom 61 ALA 1HB not found in molecular structure %READC-ERR: atom 61 ALA 2HB not found in molecular structure %READC-ERR: atom 61 ALA 3HB not found in molecular structure %READC-ERR: atom 62 GLY 1HA not found in molecular structure %READC-ERR: atom 62 GLY 2HA not found in molecular structure %READC-ERR: atom 62 GLY QA not found in molecular structure %READC-ERR: atom 63 LYS 2HB not found in molecular structure %READC-ERR: atom 63 LYS 3HB not found in molecular structure %READC-ERR: atom 63 LYS QB not found in molecular structure %READC-ERR: atom 63 LYS 2HG not found in molecular structure %READC-ERR: atom 63 LYS 3HG not found in molecular structure %READC-ERR: atom 63 LYS QG not found in molecular structure %READC-ERR: atom 63 LYS 2HD not found in molecular structure %READC-ERR: atom 63 LYS 3HD not found in molecular structure %READC-ERR: atom 63 LYS QD not found in molecular structure %READC-ERR: atom 63 LYS 2HE not found in molecular structure %READC-ERR: atom 63 LYS 3HE not found in molecular structure %READC-ERR: atom 63 LYS QE not found in molecular structure %READC-ERR: atom 63 LYS 1HZ not found in molecular structure %READC-ERR: atom 63 LYS 2HZ not found in molecular structure %READC-ERR: atom 63 LYS 3HZ not found in molecular structure %READC-ERR: atom 63 LYS QZ not found in molecular structure %READC-ERR: atom 64 VAL QG1 not found in molecular structure %READC-ERR: atom 64 VAL QG2 not found in molecular structure %READC-ERR: atom 64 VAL 1HG1 not found in molecular structure %READC-ERR: atom 64 VAL 2HG1 not found in molecular structure %READC-ERR: atom 64 VAL 3HG1 not found in molecular structure %READC-ERR: atom 64 VAL 1HG2 not found in molecular structure %READC-ERR: atom 64 VAL 2HG2 not found in molecular structure %READC-ERR: atom 64 VAL 3HG2 not found in molecular structure %READC-ERR: atom 64 VAL QQG not found in molecular structure %READC-ERR: atom 65 LEU 2HB not found in molecular structure %READC-ERR: atom 65 LEU 3HB not found in molecular structure %READC-ERR: atom 65 LEU QB not found in molecular structure %READC-ERR: atom 65 LEU QD1 not found in molecular structure %READC-ERR: atom 65 LEU QD2 not found in molecular structure %READC-ERR: atom 65 LEU 1HD1 not found in molecular structure %READC-ERR: atom 65 LEU 2HD1 not found in molecular structure %READC-ERR: atom 65 LEU 3HD1 not found in molecular structure %READC-ERR: atom 65 LEU 1HD2 not found in molecular structure %READC-ERR: atom 65 LEU 2HD2 not found in molecular structure %READC-ERR: atom 65 LEU 3HD2 not found in molecular structure %READC-ERR: atom 65 LEU QQD not found in molecular structure %READC-ERR: atom 66 GLU 2HB not found in molecular structure %READC-ERR: atom 66 GLU 3HB not found in molecular structure %READC-ERR: atom 66 GLU QB not found in molecular structure %READC-ERR: atom 66 GLU 2HG not found in molecular structure %READC-ERR: atom 66 GLU 3HG not found in molecular structure %READC-ERR: atom 66 GLU QG not found in molecular structure %READC-ERR: atom 67 ASN 2HB not found in molecular structure %READC-ERR: atom 67 ASN 3HB not found in molecular structure %READC-ERR: atom 67 ASN QB not found in molecular structure %READC-ERR: atom 67 ASN 1HD2 not found in molecular structure %READC-ERR: atom 67 ASN 2HD2 not found in molecular structure %READC-ERR: atom 67 ASN QD2 not found in molecular structure %READC-ERR: atom 68 SER 2HB not found in molecular structure %READC-ERR: atom 68 SER 3HB not found in molecular structure %READC-ERR: atom 68 SER QB not found in molecular structure %READC-ERR: atom 69 LYS 2HB not found in molecular structure %READC-ERR: atom 69 LYS 3HB not found in molecular structure %READC-ERR: atom 69 LYS QB not found in molecular structure %READC-ERR: atom 69 LYS 2HG not found in molecular structure %READC-ERR: atom 69 LYS 3HG not found in molecular structure %READC-ERR: atom 69 LYS QG not found in molecular structure %READC-ERR: atom 69 LYS 2HD not found in molecular structure %READC-ERR: atom 69 LYS 3HD not found in molecular structure %READC-ERR: atom 69 LYS QD not found in molecular structure %READC-ERR: atom 69 LYS 2HE not found in molecular structure %READC-ERR: atom 69 LYS 3HE not found in molecular structure %READC-ERR: atom 69 LYS QE not found in molecular structure %READC-ERR: atom 69 LYS 1HZ not found in molecular structure %READC-ERR: atom 69 LYS 2HZ not found in molecular structure %READC-ERR: atom 69 LYS 3HZ not found in molecular structure %READC-ERR: atom 69 LYS QZ not found in molecular structure %READC-ERR: atom 70 THR QG2 not found in molecular structure %READC-ERR: atom 70 THR 1HG2 not found in molecular structure %READC-ERR: atom 70 THR 2HG2 not found in molecular structure %READC-ERR: atom 70 THR 3HG2 not found in molecular structure %READC-ERR: atom 71 VAL QG1 not found in molecular structure %READC-ERR: atom 71 VAL QG2 not found in molecular structure %READC-ERR: atom 71 VAL 1HG1 not found in molecular structure %READC-ERR: atom 71 VAL 2HG1 not found in molecular structure %READC-ERR: atom 71 VAL 3HG1 not found in molecular structure %READC-ERR: atom 71 VAL 1HG2 not found in molecular structure %READC-ERR: atom 71 VAL 2HG2 not found in molecular structure %READC-ERR: atom 71 VAL 3HG2 not found in molecular structure %READC-ERR: atom 71 VAL QQG not found in molecular structure %READC-ERR: atom 72 LYS 2HB not found in molecular structure %READC-ERR: atom 72 LYS 3HB not found in molecular structure %READC-ERR: atom 72 LYS QB not found in molecular structure %READC-ERR: atom 72 LYS 2HG not found in molecular structure %READC-ERR: atom 72 LYS 3HG not found in molecular structure %READC-ERR: atom 72 LYS QG not found in molecular structure %READC-ERR: atom 72 LYS 2HD not found in molecular structure %READC-ERR: atom 72 LYS 3HD not found in molecular structure %READC-ERR: atom 72 LYS QD not found in molecular structure %READC-ERR: atom 72 LYS 2HE not found in molecular structure %READC-ERR: atom 72 LYS 3HE not found in molecular structure %READC-ERR: atom 72 LYS QE not found in molecular structure %READC-ERR: atom 72 LYS 1HZ not found in molecular structure %READC-ERR: atom 72 LYS 2HZ not found in molecular structure %READC-ERR: atom 72 LYS 3HZ not found in molecular structure %READC-ERR: atom 72 LYS QZ not found in molecular structure %READC-ERR: atom 73 ASP 2HB not found in molecular structure %READC-ERR: atom 73 ASP 3HB not found in molecular structure %READC-ERR: atom 73 ASP QB not found in molecular structure %READC-ERR: atom 74 TYR 2HB not found in molecular structure %READC-ERR: atom 74 TYR 3HB not found in molecular structure %READC-ERR: atom 74 TYR QB not found in molecular structure %READC-ERR: atom 74 TYR QD not found in molecular structure %READC-ERR: atom 74 TYR QE not found in molecular structure %READC-ERR: atom 74 TYR QR not found in molecular structure %READC-ERR: atom 75 ARG 2HB not found in molecular structure %READC-ERR: atom 75 ARG 3HB not found in molecular structure %READC-ERR: atom 75 ARG QB not found in molecular structure %READC-ERR: atom 75 ARG 2HG not found in molecular structure %READC-ERR: atom 75 ARG 3HG not found in molecular structure %READC-ERR: atom 75 ARG QG not found in molecular structure %READC-ERR: atom 75 ARG 2HD not found in molecular structure %READC-ERR: atom 75 ARG 3HD not found in molecular structure %READC-ERR: atom 75 ARG QD not found in molecular structure %READC-ERR: atom 75 ARG 1HH1 not found in molecular structure %READC-ERR: atom 75 ARG 2HH1 not found in molecular structure %READC-ERR: atom 75 ARG QH1 not found in molecular structure %READC-ERR: atom 75 ARG 1HH2 not found in molecular structure %READC-ERR: atom 75 ARG 2HH2 not found in molecular structure %READC-ERR: atom 75 ARG QH2 not found in molecular structure %READC-ERR: atom 76 SER 2HB not found in molecular structure %READC-ERR: atom 76 SER 3HB not found in molecular structure %READC-ERR: atom 76 SER QB not found in molecular structure %READC-ERR: atom 77 PRO 2HB not found in molecular structure %READC-ERR: atom 77 PRO 3HB not found in molecular structure %READC-ERR: atom 77 PRO QB not found in molecular structure %READC-ERR: atom 77 PRO 2HG not found in molecular structure %READC-ERR: atom 77 PRO 3HG not found in molecular structure %READC-ERR: atom 77 PRO QG not found in molecular structure %READC-ERR: atom 77 PRO 2HD not found in molecular structure %READC-ERR: atom 77 PRO 3HD not found in molecular structure %READC-ERR: atom 77 PRO QD not found in molecular structure %READC-ERR: atom 78 VAL QG1 not found in molecular structure %READC-ERR: atom 78 VAL QG2 not found in molecular structure %READC-ERR: atom 78 VAL 1HG1 not found in molecular structure %READC-ERR: atom 78 VAL 2HG1 not found in molecular structure %READC-ERR: atom 78 VAL 3HG1 not found in molecular structure %READC-ERR: atom 78 VAL 1HG2 not found in molecular structure %READC-ERR: atom 78 VAL 2HG2 not found in molecular structure %READC-ERR: atom 78 VAL 3HG2 not found in molecular structure %READC-ERR: atom 78 VAL QQG not found in molecular structure %READC-ERR: atom 79 SER 2HB not found in molecular structure %READC-ERR: atom 79 SER 3HB not found in molecular structure %READC-ERR: atom 79 SER QB not found in molecular structure %READC-ERR: atom 80 ASN 2HB not found in molecular structure %READC-ERR: atom 80 ASN 3HB not found in molecular structure %READC-ERR: atom 80 ASN QB not found in molecular structure %READC-ERR: atom 80 ASN 1HD2 not found in molecular structure %READC-ERR: atom 80 ASN 2HD2 not found in molecular structure %READC-ERR: atom 80 ASN QD2 not found in molecular structure %READC-ERR: atom 81 LEU 2HB not found in molecular structure %READC-ERR: atom 81 LEU 3HB not found in molecular structure %READC-ERR: atom 81 LEU QB not found in molecular structure %READC-ERR: atom 81 LEU QD1 not found in molecular structure %READC-ERR: atom 81 LEU QD2 not found in molecular structure %READC-ERR: atom 81 LEU 1HD1 not found in molecular structure %READC-ERR: atom 81 LEU 2HD1 not found in molecular structure %READC-ERR: atom 81 LEU 3HD1 not found in molecular structure %READC-ERR: atom 81 LEU 1HD2 not found in molecular structure %READC-ERR: atom 81 LEU 2HD2 not found in molecular structure %READC-ERR: atom 81 LEU 3HD2 not found in molecular structure %READC-ERR: atom 81 LEU QQD not found in molecular structure %READC-ERR: atom 82 ALA QB not found in molecular structure %READC-ERR: atom 82 ALA 1HB not found in molecular structure %READC-ERR: atom 82 ALA 2HB not found in molecular structure %READC-ERR: atom 82 ALA 3HB not found in molecular structure %READC-ERR: atom 83 GLY 1HA not found in molecular structure %READC-ERR: atom 83 GLY 2HA not found in molecular structure %READC-ERR: atom 83 GLY QA not found in molecular structure %READC-ERR: atom 84 ALA QB not found in molecular structure %READC-ERR: atom 84 ALA 1HB not found in molecular structure %READC-ERR: atom 84 ALA 2HB not found in molecular structure %READC-ERR: atom 84 ALA 3HB not found in molecular structure %READC-ERR: atom 85 VAL QG1 not found in molecular structure %READC-ERR: atom 85 VAL QG2 not found in molecular structure %READC-ERR: atom 85 VAL 1HG1 not found in molecular structure %READC-ERR: atom 85 VAL 2HG1 not found in molecular structure %READC-ERR: atom 85 VAL 3HG1 not found in molecular structure %READC-ERR: atom 85 VAL 1HG2 not found in molecular structure %READC-ERR: atom 85 VAL 2HG2 not found in molecular structure %READC-ERR: atom 85 VAL 3HG2 not found in molecular structure %READC-ERR: atom 85 VAL QQG not found in molecular structure %READC-ERR: atom 86 THR QG2 not found in molecular structure %READC-ERR: atom 86 THR 1HG2 not found in molecular structure %READC-ERR: atom 86 THR 2HG2 not found in molecular structure %READC-ERR: atom 86 THR 3HG2 not found in molecular structure %READC-ERR: atom 87 THR QG2 not found in molecular structure %READC-ERR: atom 87 THR 1HG2 not found in molecular structure %READC-ERR: atom 87 THR 2HG2 not found in molecular structure %READC-ERR: atom 87 THR 3HG2 not found in molecular structure %READC-ERR: atom 88 MET 2HB not found in molecular structure %READC-ERR: atom 88 MET 3HB not found in molecular structure %READC-ERR: atom 88 MET QB not found in molecular structure %READC-ERR: atom 88 MET 2HG not found in molecular structure %READC-ERR: atom 88 MET 3HG not found in molecular structure %READC-ERR: atom 88 MET QG not found in molecular structure %READC-ERR: atom 88 MET QE not found in molecular structure %READC-ERR: atom 88 MET 1HE not found in molecular structure %READC-ERR: atom 88 MET 2HE not found in molecular structure %READC-ERR: atom 88 MET 3HE not found in molecular structure %READC-ERR: atom 89 HIS 2HB not found in molecular structure %READC-ERR: atom 89 HIS 3HB not found in molecular structure %READC-ERR: atom 89 HIS QB not found in molecular structure %READC-ERR: atom 90 VAL QG1 not found in molecular structure %READC-ERR: atom 90 VAL QG2 not found in molecular structure %READC-ERR: atom 90 VAL 1HG1 not found in molecular structure %READC-ERR: atom 90 VAL 2HG1 not found in molecular structure %READC-ERR: atom 90 VAL 3HG1 not found in molecular structure %READC-ERR: atom 90 VAL 1HG2 not found in molecular structure %READC-ERR: atom 90 VAL 2HG2 not found in molecular structure %READC-ERR: atom 90 VAL 3HG2 not found in molecular structure %READC-ERR: atom 90 VAL QQG not found in molecular structure %READC-ERR: atom 91 ILE QG2 not found in molecular structure %READC-ERR: atom 91 ILE 1HG2 not found in molecular structure %READC-ERR: atom 91 ILE 2HG2 not found in molecular structure %READC-ERR: atom 91 ILE 3HG2 not found in molecular structure %READC-ERR: atom 91 ILE 2HG1 not found in molecular structure %READC-ERR: atom 91 ILE 3HG1 not found in molecular structure %READC-ERR: atom 91 ILE QG1 not found in molecular structure %READC-ERR: atom 91 ILE QD1 not found in molecular structure %READC-ERR: atom 91 ILE 1HD1 not found in molecular structure %READC-ERR: atom 91 ILE 2HD1 not found in molecular structure %READC-ERR: atom 91 ILE 3HD1 not found in molecular structure %READC-ERR: atom 92 ILE QG2 not found in molecular structure %READC-ERR: atom 92 ILE 1HG2 not found in molecular structure %READC-ERR: atom 92 ILE 2HG2 not found in molecular structure %READC-ERR: atom 92 ILE 3HG2 not found in molecular structure %READC-ERR: atom 92 ILE 2HG1 not found in molecular structure %READC-ERR: atom 92 ILE 3HG1 not found in molecular structure %READC-ERR: atom 92 ILE QG1 not found in molecular structure %READC-ERR: atom 92 ILE QD1 not found in molecular structure %READC-ERR: atom 92 ILE 1HD1 not found in molecular structure %READC-ERR: atom 92 ILE 2HD1 not found in molecular structure %READC-ERR: atom 92 ILE 3HD1 not found in molecular structure %READC-ERR: atom 93 GLN 2HB not found in molecular structure %READC-ERR: atom 93 GLN 3HB not found in molecular structure %READC-ERR: atom 93 GLN QB not found in molecular structure %READC-ERR: atom 93 GLN 2HG not found in molecular structure %READC-ERR: atom 93 GLN 3HG not found in molecular structure %READC-ERR: atom 93 GLN QG not found in molecular structure %READC-ERR: atom 93 GLN 1HE2 not found in molecular structure %READC-ERR: atom 93 GLN 2HE2 not found in molecular structure %READC-ERR: atom 93 GLN QE2 not found in molecular structure %READC-ERR: atom 94 ALA QB not found in molecular structure %READC-ERR: atom 94 ALA 1HB not found in molecular structure %READC-ERR: atom 94 ALA 2HB not found in molecular structure %READC-ERR: atom 94 ALA 3HB not found in molecular structure %READC-ERR: atom 95 PRO 2HB not found in molecular structure %READC-ERR: atom 95 PRO 3HB not found in molecular structure %READC-ERR: atom 95 PRO QB not found in molecular structure %READC-ERR: atom 95 PRO 2HG not found in molecular structure %READC-ERR: atom 95 PRO 3HG not found in molecular structure %READC-ERR: atom 95 PRO QG not found in molecular structure %READC-ERR: atom 95 PRO 2HD not found in molecular structure %READC-ERR: atom 95 PRO 3HD not found in molecular structure %READC-ERR: atom 95 PRO QD not found in molecular structure %READC-ERR: atom 96 VAL QG1 not found in molecular structure %READC-ERR: atom 96 VAL QG2 not found in molecular structure %READC-ERR: atom 96 VAL 1HG1 not found in molecular structure %READC-ERR: atom 96 VAL 2HG1 not found in molecular structure %READC-ERR: atom 96 VAL 3HG1 not found in molecular structure %READC-ERR: atom 96 VAL 1HG2 not found in molecular structure %READC-ERR: atom 96 VAL 2HG2 not found in molecular structure %READC-ERR: atom 96 VAL 3HG2 not found in molecular structure %READC-ERR: atom 96 VAL QQG not found in molecular structure %READC-ERR: atom 97 THR QG2 not found in molecular structure %READC-ERR: atom 97 THR 1HG2 not found in molecular structure %READC-ERR: atom 97 THR 2HG2 not found in molecular structure %READC-ERR: atom 97 THR 3HG2 not found in molecular structure %READC-ERR: atom 98 GLU 2HB not found in molecular structure %READC-ERR: atom 98 GLU 3HB not found in molecular structure %READC-ERR: atom 98 GLU QB not found in molecular structure %READC-ERR: atom 98 GLU 2HG not found in molecular structure %READC-ERR: atom 98 GLU 3HG not found in molecular structure %READC-ERR: atom 98 GLU QG not found in molecular structure %READC-ERR: atom 99 LYS 2HB not found in molecular structure %READC-ERR: atom 99 LYS 3HB not found in molecular structure %READC-ERR: atom 99 LYS QB not found in molecular structure %READC-ERR: atom 99 LYS 2HG not found in molecular structure %READC-ERR: atom 99 LYS 3HG not found in molecular structure %READC-ERR: atom 99 LYS QG not found in molecular structure %READC-ERR: atom 99 LYS 2HD not found in molecular structure %READC-ERR: atom 99 LYS 3HD not found in molecular structure %READC-ERR: atom 99 LYS QD not found in molecular structure %READC-ERR: atom 99 LYS 2HE not found in molecular structure %READC-ERR: atom 99 LYS 3HE not found in molecular structure %READC-ERR: atom 99 LYS QE not found in molecular structure %READC-ERR: atom 99 LYS 1HZ not found in molecular structure %READC-ERR: atom 99 LYS 2HZ not found in molecular structure %READC-ERR: atom 99 LYS 3HZ not found in molecular structure %READC-ERR: atom 99 LYS QZ not found in molecular structure %READC-ERR: atom 100 GLU 2HB not found in molecular structure %READC-ERR: atom 100 GLU 3HB not found in molecular structure %READC-ERR: atom 100 GLU QB not found in molecular structure %READC-ERR: atom 100 GLU 2HG not found in molecular structure %READC-ERR: atom 100 GLU 3HG not found in molecular structure %READC-ERR: atom 100 GLU QG not found in molecular structure %READC-ERR: atom 101 LYS 2HB not found in molecular structure %READC-ERR: atom 101 LYS 3HB not found in molecular structure %READC-ERR: atom 101 LYS QB not found in molecular structure %READC-ERR: atom 101 LYS 2HG not found in molecular structure %READC-ERR: atom 101 LYS 3HG not found in molecular structure %READC-ERR: atom 101 LYS QG not found in molecular structure %READC-ERR: atom 101 LYS 2HD not found in molecular structure %READC-ERR: atom 101 LYS 3HD not found in molecular structure %READC-ERR: atom 101 LYS QD not found in molecular structure %READC-ERR: atom 101 LYS 2HE not found in molecular structure %READC-ERR: atom 101 LYS 3HE not found in molecular structure %READC-ERR: atom 101 LYS QE not found in molecular structure %READC-ERR: atom 101 LYS 1HZ not found in molecular structure %READC-ERR: atom 101 LYS 2HZ not found in molecular structure %READC-ERR: atom 101 LYS 3HZ not found in molecular structure %READC-ERR: atom 101 LYS QZ not found in molecular structure %READC-ERR: atom 101 LYS O not found in molecular structure COOR>END CNSsolve>parameter @TOPPAR:parallhdg5.3.pro end PARRDR>! JFD adds FES complex parameters from Milo Westler's calculations PARRDR>! and standard topology. PARRDR> PARRDR>remark file protein-allhdg-ucl.param version UCL date 07-JUL-01 PARRDR>remark for file protein-allhdg-ucl.top version UCL date 14-MAR-00 PARRDR>remark for file protein-allhdg-dih-ucl.top version UCL date 07-JUL-01 PARRDR>remark Geometric energy function parameters for distance geometry and PARRDR>remark simulated annealing. PARRDR>remark Original author: Michael Nilges, EMBL Heidelberg PARRDR>remark Modifications: Mark A. Williams, UCL London PARRDR> PARRDR>set echo off message off end SHOW: sum over selected elements = 2.000000 CNSsolve> CNSsolve> if ( $log_level = verbose ) then CNSsolve> set message=normal echo=on end CNSsolve> else CNSsolve> set message=off echo=off end CNSsolve> end if CNSsolve> CNSsolve> CNSsolve> identity (store1) (none) SELRPN: 0 atoms have been selected out of 1586 CNSsolve> CNSsolve> identity (store1) (&atom_build) SELRPN: 539 atoms have been selected out of 1586 CNSsolve> identity (store1) (store1 or hydrogen) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 809 atoms have been selected out of 1586 SHOW: sum over selected elements = 809.000000 CNSsolve> evaluate ($tobuild=$result) EVALUATE: symbol $TOBUILD set to 809.000 (real) CNSsolve> CNSsolve> !evaluate ($tobuild=0) CNSsolve> CNSsolve> if ( $tobuild > 0 ) then NEXTCD: condition evaluated as true CNSsolve> CNSsolve> fix selection=(not(store1)) end SELRPN: 777 atoms have been selected out of 1586 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 809 atoms have been selected out of 1586 SHOW: sum over selected elements = 809.000000 CNSsolve> evaluate ($moving=$result) EVALUATE: symbol $MOVING set to 809.000 (real) CNSsolve> CNSsolve> if ( $moving > 0 ) then NEXTCD: condition evaluated as true CNSsolve> for $id in id (tag and byres(store1)) loop avco SELRPN: 101 atoms have been selected out of 1586 FOR ID LOOP: symbol ID set to 1.00000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 2.027100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 2.02710 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -0.875900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.875900 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -2.321300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.32130 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 18.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 3.195143 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 3.19514 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 2.827857 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.82786 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -2.895000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.89500 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 28.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 4.842455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.84245 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 6.829182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.82918 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -2.612727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.61273 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 43.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 0.847100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.847100 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 6.745200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.74520 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 0.766700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.766700 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 59.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 16 atoms have been selected out of 1586 SHOW: average of selected elements = 1.542625 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.54263 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 16 atoms have been selected out of 1586 SHOW: average of selected elements = 11.273500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.2735 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 16 atoms have been selected out of 1586 SHOW: average of selected elements = 0.514250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.514250 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 77.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -3.301700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.30170 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 9.729700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.72970 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 3.852700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.85270 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 91.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -2.076909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.07691 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 9.795727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.79573 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 7.421000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.42100 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 108.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 1.175182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.17518 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 12.939818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 12.9398 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 9.120273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.12027 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 127.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 5.088000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.08800 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 10.449818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.4498 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 7.598000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.59800 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 142.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 6.658545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 6.65855 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 10.030636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.0306 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 12.593545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 12.5935 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 161.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 11.915636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.9156 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 10.691636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.6916 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 11.399091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 11.3991 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 183.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1586 SHOW: average of selected elements = 11.142444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.1424 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1586 SHOW: average of selected elements = 8.306389 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.30639 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1586 SHOW: average of selected elements = 15.827222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 15.8272 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 203.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = 17.479429 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 17.4794 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = 12.057929 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 12.0579 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = 13.865929 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 13.8659 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 227.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 19.309455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 19.3095 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 7.737909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.73791 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 17.115455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 17.1155 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 246.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 22.111545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 22.1115 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 10.498000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.4980 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 19.896000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 19.8960 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 260.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 25.048200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.0482 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 8.365700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.36570 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 17.376900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 17.3769 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 272.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = 22.573800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 22.5738 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = 10.010000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.0100 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = 14.373000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 14.3730 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 279.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 21.349333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 21.3493 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 6.959111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.95911 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 13.751333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 13.7513 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 290.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 18.384900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.3849 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 6.888300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.88830 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 10.932200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 10.9322 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 302.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 14.500455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 14.5005 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 4.905273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.90527 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 13.075000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 13.0750 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 321.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = 12.569200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 12.5692 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = 3.890200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.89020 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = 10.407400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 10.4074 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 328.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 10.083250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 10.0833 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 6.001000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.00100 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 8.502000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 8.50200 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 342.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 5.692727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.69273 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 4.447364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.44736 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 10.439909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 10.4399 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 364.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 2.863000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 2.86300 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 6.339143 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.33914 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 9.455857 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.45586 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 374.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1586 SHOW: average of selected elements = 3.263833 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 3.26383 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1586 SHOW: average of selected elements = 7.725278 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.72528 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1586 SHOW: average of selected elements = 12.875944 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 12.8759 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 394.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -2.237625 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.23763 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 9.503250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.50325 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 12.884250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 12.8843 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 408.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -2.676300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.67630 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 14.097200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 14.0972 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 13.139500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 13.1395 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 420.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -5.221571 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -5.22157 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 11.748571 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.7486 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 15.897143 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 15.8971 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 430.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -2.217364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.21736 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 9.425636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.42564 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 16.952455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 16.9525 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 444.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -2.187091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.18709 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 9.286091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.28609 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 21.098636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 21.0986 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 458.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 1.853700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.85370 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 10.054600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.0546 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 22.790900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 22.7909 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 474.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 0.025778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.257778E-01 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 6.054667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.05467 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 23.688333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 23.6883 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 485.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 0.880000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.880000 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 5.288714 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.28871 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 20.149857 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 20.1499 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 495.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 4.556091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.55609 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 7.603727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.60373 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 19.703545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 19.7035 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 514.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 4.646364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.64636 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 5.454364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.45436 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 23.714364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 23.7144 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 536.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 3.055182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 3.05518 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 1.655909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.65591 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 22.541909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 22.5419 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 551.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 4.720182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.72018 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 2.192909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.19291 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 17.929909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 17.9299 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 565.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 8.451800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.45180 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 3.546100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.54610 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 19.945100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 19.9451 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 581.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 8.230273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.23027 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -0.221727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.221727 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 22.022727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 22.0227 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 600.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 7.527444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.52744 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -2.216000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.21600 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 18.258667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 18.2587 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 611.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 10.296636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 10.2966 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 0.413818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.413818 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 15.500455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 15.5005 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 626.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1586 SHOW: average of selected elements = 15.391091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.3911 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1586 SHOW: average of selected elements = 0.817727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.817727 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1586 SHOW: average of selected elements = 20.165045 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 20.1650 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 650.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 15.090000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.0900 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -3.254250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.25425 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 19.496250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 19.4963 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 664.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = 11.220857 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.2209 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = -5.573714 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.57371 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = 23.354143 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 23.3541 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 688.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 16.314455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 16.3145 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -8.292364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.29236 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 22.314273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 22.3143 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 703.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 19.552909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 19.5529 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -3.521545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.52155 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 21.802273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 21.8023 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 725.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 22.326000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 22.3260 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -5.485273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.48527 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 24.769273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 24.7693 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 740.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 23.177600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.1776 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -2.502300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.50230 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 27.472500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 27.4725 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 754.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = 19.306000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 19.3060 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -0.698200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.698200 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = 26.639400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 26.6394 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 761.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 16.332250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 16.3323 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 0.953250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.953250 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 25.397625 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 25.3976 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 775.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 13.390364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.3904 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -2.861273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.86127 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 26.380909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 26.3809 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 797.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 10.120455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 10.1205 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -0.198909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.198909 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 28.158909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 28.1589 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 811.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 8.055000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.05500 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 3.492900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.49290 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 27.251500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 27.2515 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 827.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 9.333545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.33355 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 3.587000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.58700 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 32.079545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 32.0795 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 849.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 13.556091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.5561 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 2.644818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.64482 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 29.407636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 29.4076 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 864.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 11.565400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.5654 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 5.879200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.87920 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 26.203400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 26.2034 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 880.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 12.008909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 12.0089 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 10.712636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.7126 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 27.454273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 27.4543 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 902.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 9.166000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.16600 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 11.366273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.3663 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 23.606364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 23.6064 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 921.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 11.479364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.4794 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 15.598182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 15.5982 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 23.500636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 23.5006 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 940.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 8.756222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.75622 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 18.097111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 18.0971 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 21.057111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 21.0571 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 951.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 11.104571 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.1046 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 20.941857 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 20.9419 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 20.114571 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 20.1146 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 961.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = 11.975800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.9758 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = 20.804400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 20.8044 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = 23.356400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 23.3564 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 968.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 8.045727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.04573 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 21.104182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 21.1042 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 24.348636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 24.3486 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 990.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 7.878500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.87850 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 17.263200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 17.2632 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 27.127700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 27.1277 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1006.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 5.689545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.68955 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 14.716273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 14.7163 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 24.062364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 24.0624 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1025.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 2.065364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 2.06536 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 15.125909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 15.1259 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 27.630636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 27.6306 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1040.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -0.040200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.402000E-01 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 10.750700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.7507 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 27.320300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 27.3203 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1054.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -3.020444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.02044 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 13.678889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 13.6789 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 27.968444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 27.9684 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1065.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -1.952364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -1.95236 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 16.146273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 16.1463 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 24.850273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 24.8503 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1087.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -3.049818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.04982 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 14.659545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 14.6595 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 20.713818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 20.7138 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1101.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -0.517800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.517800 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 14.419000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 14.4190 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 17.053200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 17.0532 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1117.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -4.481182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.48118 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 17.831818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 17.8318 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 16.185182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 16.1852 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1139.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -3.478000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.47800 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 19.082400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 19.0824 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 20.283700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 20.2837 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1151.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1586 SHOW: average of selected elements = 2.192368 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 2.19237 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1586 SHOW: average of selected elements = 19.190474 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 19.1905 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1586 SHOW: average of selected elements = 20.633842 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 20.6338 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1172.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = 1.212571 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.21257 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = 19.360929 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 19.3609 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = 13.360071 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 13.3601 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1196.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -1.322556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -1.32256 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 22.545667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 22.5457 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 12.600444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 12.6004 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1207.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -5.074000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -5.07400 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 22.950000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 22.9500 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 11.978875 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 11.9789 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1221.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -7.830800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -7.83080 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 21.220400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 21.2204 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 9.132000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.13200 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1237.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -5.852556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -5.85256 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 24.908778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 24.9088 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 7.421222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.42122 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1248.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -3.868400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.86840 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 24.254700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 24.2547 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 3.921300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.92130 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1262.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -2.526091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.52609 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 20.510273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 20.5103 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 2.323909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.32391 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1281.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 0.319857 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.319857 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 18.882429 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 18.8824 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 4.394714 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.39471 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1291.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = 3.844600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 3.84460 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = 17.693600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 17.6936 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = 3.706200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.70620 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1298.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 5.776571 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.77657 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 17.275571 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 17.2756 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 6.074000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.07400 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1308.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 8.724100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.72410 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 14.973600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 14.9736 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 7.598100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.59810 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1324.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 7.378273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.37827 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 14.558000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 14.5580 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 11.724364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 11.7244 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1338.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 11.647727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.6477 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 14.979091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 14.9791 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 13.033909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 13.0339 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1352.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 10.290200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 10.2902 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 13.333800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 13.3338 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 17.072600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 17.0726 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1369.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 16 atoms have been selected out of 1586 SHOW: average of selected elements = 14.530750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 14.5308 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 16 atoms have been selected out of 1586 SHOW: average of selected elements = 15.935750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 15.9358 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 16 atoms have been selected out of 1586 SHOW: average of selected elements = 18.759438 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 18.7594 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1387.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 15.257200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.2572 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 10.423500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.4235 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 20.880000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 20.8800 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1403.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 16.027636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 16.0276 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 10.944818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.9448 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 25.153182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 25.1532 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1422.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 18.707636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.7076 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 7.486273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.48627 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 25.880273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 25.8803 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1441.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 17.241818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 17.2418 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 8.243000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.24300 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 30.348636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 30.3486 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1458.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 18.433000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.4330 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 4.847429 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.84743 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 32.165857 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 32.1659 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1468.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 17.411250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 17.4113 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 3.032125 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.03213 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 35.169875 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 35.1699 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1482.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 19.421500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 19.4215 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 4.045500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.04550 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 38.986100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 38.9861 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1498.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 17.895364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 17.8954 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 0.192636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.192636 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 39.805364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 39.8054 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1512.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 20.834000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 20.8340 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -2.009455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.00945 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 37.200545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 37.2005 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1527.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 21.292182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 21.2922 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -7.052909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.05291 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 38.799455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 38.7995 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1549.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 26.461818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 26.4618 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -4.664545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.66455 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 38.925545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 38.9255 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1564.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 26.081200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 26.0812 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -8.690700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.69070 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 35.091100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 35.0911 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 15 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 15 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 15 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) CNSsolve> evaluate ($ave_x=$result) CNSsolve> show ave(y) (byres(id $id) and known) CNSsolve> evaluate ($ave_y=$result) CNSsolve> show ave(z) (byres(id $id) and known) CNSsolve> evaluate ($ave_z=$result) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) CNSsolve> do (y=$ave_y) (byres(id $id) and store1) CNSsolve> do (z=$ave_z) (byres(id $id) and store1) CNSsolve> CNSsolve> end loop avco CNSsolve> CNSsolve> do (x=x+random(2.0)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (y=y+random(2.0)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (z=z+random(2.0)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> {- start parameter for the side chain building -} CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=20. nbxmod=-2 repel=0.9 wmin=0.1 tolerance=1. NBDSET> rexp=2 irexp=2 inhibit=0.25 NBDSET> end PARRDR> end CNSsolve> CNSsolve> {- Friction coefficient, in 1/ps. -} CNSsolve> do (fbeta=100) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> evaluate ($bath=300.0) EVALUATE: symbol $BATH set to 300.000 (real) CNSsolve> evaluate ($nstep=500) EVALUATE: symbol $NSTEP set to 500.000 (real) CNSsolve> evaluate ($timestep=0.0005) EVALUATE: symbol $TIMESTEP set to 0.500000E-03 (real) CNSsolve> CNSsolve> do (refy=mass) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> do (mass=20) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> igroup interaction SELRPN> (store1) (store1 or known) SELRPN: 809 atoms have been selected out of 1586 SELRPN: 1586 atoms have been selected out of 1586 IGROup> end CNSsolve> CNSsolve> {- turn on initial energy terms -} CNSsolve> flags exclude * include bond angle vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 2427 NBONDS: generating intra-molecular exclusion list with mode=-2 MAKINB: mode -2 found 809 exclusions and 0 interactions(1-4) %atoms " -7 -GLN -HG2 " and " -7 -GLN -HE21" only 0.09 A apart %atoms " -8 -LEU -CB " and " -8 -LEU -HD12" only 0.09 A apart %atoms " -10 -ILE -HD12" and " -10 -ILE -HD13" only 0.09 A apart %atoms " -34 -LEU -HD11" and " -34 -LEU -HD23" only 0.09 A apart %atoms " -35 -LYS -HE2 " and " -35 -LYS -HZ3 " only 0.04 A apart %atoms " -38 -VAL -HN " and " -38 -VAL -HG12" only 0.10 A apart %atoms " -42 -TRP -HB1 " and " -42 -TRP -HD1 " only 0.07 A apart %atoms " -45 -GLU -HB1 " and " -45 -GLU -HB2 " only 0.09 A apart %atoms " -46 -LYS -HA " and " -46 -LYS -HZ1 " only 0.09 A apart %atoms " -50 -PRO -HA " and " -50 -PRO -HG1 " only 0.10 A apart %atoms " -51 -LYS -HD1 " and " -51 -LYS -HD2 " only 0.09 A apart %atoms " -64 -VAL -HG21" and " -64 -VAL -HG23" only 0.05 A apart %atoms " -68 -SER -HA " and " -68 -SER -HB1 " only 0.08 A apart %atoms " -76 -SER -HB1 " and " -76 -SER -HB2 " only 0.08 A apart %atoms " -93 -GLN -HG2 " and " -93 -GLN -HE21" only 0.06 A apart NBONDS: found 93151 intra-atom interactions NBONDS: found 15 nonbonded violations NBONDS: found 91545 intra-atom interactions NBONDS: found 86524 intra-atom interactions NBONDS: found 83805 intra-atom interactions NBONDS: found 84291 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0000 ----------------------- | Etotal =415158.131 grad(E)=597.491 E(BOND)=67600.887 E(ANGL)=195837.019 | | E(VDW )=151720.226 | ------------------------------------------------------------------------------- NBONDS: found 84537 intra-atom interactions NBONDS: found 84568 intra-atom interactions NBONDS: found 84611 intra-atom interactions NBONDS: found 84707 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0000 ----------------------- | Etotal =150177.054 grad(E)=350.930 E(BOND)=22426.683 E(ANGL)=51688.812 | | E(VDW )=76061.558 | ------------------------------------------------------------------------------- NBONDS: found 84701 intra-atom interactions NBONDS: found 84765 intra-atom interactions --------------- cycle= 30 ------ stepsize= -0.0001 ----------------------- | Etotal =136233.296 grad(E)=331.750 E(BOND)=21124.171 E(ANGL)=44197.686 | | E(VDW )=70911.439 | ------------------------------------------------------------------------------- NBONDS: found 84798 intra-atom interactions --------------- cycle= 40 ------ stepsize= -0.0004 ----------------------- | Etotal =134574.679 grad(E)=326.805 E(BOND)=20206.687 E(ANGL)=43355.630 | | E(VDW )=71012.362 | ------------------------------------------------------------------------------- --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =134315.602 grad(E)=326.335 E(BOND)=20316.482 E(ANGL)=43353.975 | | E(VDW )=70645.145 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> flags exclude vdw include impr end CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=551802.806 E(kin)=719.635 temperature=298.423 | | Etotal =551083.171 grad(E)=682.486 E(BOND)=20316.482 E(ANGL)=43353.975 | | E(IMPR)=487412.714 | ------------------------------------------------------------------------------- -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=353373.635 E(kin)=58961.216 temperature=24450.460 | | Etotal =294412.419 grad(E)=428.238 E(BOND)=42921.782 E(ANGL)=104769.364 | | E(IMPR)=146721.274 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 8.50441 8.30578 19.31438 velocity [A/ps] : -0.46216 1.05709 -1.97003 ang. mom. [amu A/ps] : 36733.09436-295645.08945-153996.81243 kin. ener. [Kcal/mol] : 100.77802 CNSsolve> CNSsolve> flags include vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 2427 NBONDS: found 84310 intra-atom interactions NBONDS: found 84288 intra-atom interactions NBONDS: found 84389 intra-atom interactions NBONDS: found 84655 intra-atom interactions NBONDS: found 84904 intra-atom interactions NBONDS: found 84743 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0002 ----------------------- | Etotal =258119.114 grad(E)=447.957 E(BOND)=38496.715 E(ANGL)=74183.507 | | E(IMPR)=103166.720 E(VDW )=42272.172 | ------------------------------------------------------------------------------- NBONDS: found 84956 intra-atom interactions NBONDS: found 84880 intra-atom interactions NBONDS: found 84809 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0000 ----------------------- | Etotal =154080.799 grad(E)=275.424 E(BOND)=18688.186 E(ANGL)=25758.109 | | E(IMPR)=68963.553 E(VDW )=40670.951 | ------------------------------------------------------------------------------- NBONDS: found 84801 intra-atom interactions NBONDS: found 84827 intra-atom interactions NBONDS: found 84821 intra-atom interactions NBONDS: found 84820 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0003 ----------------------- | Etotal =141929.317 grad(E)=270.935 E(BOND)=17652.733 E(ANGL)=22676.108 | | E(IMPR)=61622.852 E(VDW )=39977.624 | ------------------------------------------------------------------------------- NBONDS: found 84820 intra-atom interactions NBONDS: found 84833 intra-atom interactions --------------- cycle= 40 ------ stepsize= 0.0000 ----------------------- | Etotal =127283.197 grad(E)=270.928 E(BOND)=17579.998 E(ANGL)=20728.150 | | E(IMPR)=49709.407 E(VDW )=39265.641 | ------------------------------------------------------------------------------- NBONDS: found 84820 intra-atom interactions NBONDS: found 84830 intra-atom interactions NBONDS: found 84890 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =115958.461 grad(E)=265.839 E(BOND)=17136.979 E(ANGL)=17120.413 | | E(IMPR)=43313.393 E(VDW )=38387.676 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=116708.488 E(kin)=750.027 temperature=311.027 | | Etotal =115958.461 grad(E)=265.839 E(BOND)=17136.979 E(ANGL)=17120.413 | | E(IMPR)=43313.393 E(VDW )=38387.676 | ------------------------------------------------------------------------------- NBONDS: found 84882 intra-atom interactions NBONDS: found 84874 intra-atom interactions -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=113274.088 E(kin)=2782.545 temperature=1153.886 | | Etotal =110491.543 grad(E)=269.030 E(BOND)=17602.216 E(ANGL)=15423.838 | | E(IMPR)=39358.392 E(VDW )=38107.097 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 8.52022 8.33724 19.31895 velocity [A/ps] : -0.21610 0.05653 0.40983 ang. mom. [amu A/ps] : 86642.62623 102894.43212 30981.44152 kin. ener. [Kcal/mol] : 4.21233 CNSsolve> CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=2. nbxmod=-3 repel=0.75 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=100 nprint=25 end POWELL: number of degrees of freedom= 2427 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 2666 exclusions and 0 interactions(1-4) NBONDS: found 83010 intra-atom interactions NBONDS: found 83510 intra-atom interactions NBONDS: found 83510 intra-atom interactions NBONDS: found 83500 intra-atom interactions --------------- cycle= 25 ------ stepsize= 0.0000 ----------------------- | Etotal =43913.773 grad(E)=72.012 E(BOND)=1336.575 E(ANGL)=11723.418 | | E(IMPR)=30850.964 E(VDW )=2.816 | ------------------------------------------------------------------------------- NBONDS: found 83460 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =45685.492 grad(E)=314.524 E(BOND)=1399.955 E(ANGL)=11031.981 | | E(IMPR)=33250.787 E(VDW )=2.769 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=42964.501 E(kin)=728.636 temperature=302.156 | | Etotal =42235.865 grad(E)=52.239 E(BOND)=1399.954 E(ANGL)=11031.984 | | E(IMPR)=29801.159 E(VDW )=2.769 | ------------------------------------------------------------------------------- NBONDS: found 83480 intra-atom interactions NBONDS: found 83495 intra-atom interactions NBONDS: found 83484 intra-atom interactions NBONDS: found 83445 intra-atom interactions NBONDS: found 83437 intra-atom interactions NBONDS: found 83481 intra-atom interactions NBONDS: found 83514 intra-atom interactions NBONDS: found 83478 intra-atom interactions NBONDS: found 83419 intra-atom interactions NBONDS: found 83377 intra-atom interactions NBONDS: found 83448 intra-atom interactions NBONDS: found 83439 intra-atom interactions NBONDS: found 83444 intra-atom interactions NBONDS: found 83434 intra-atom interactions NBONDS: found 83464 intra-atom interactions NBONDS: found 83505 intra-atom interactions NBONDS: found 83531 intra-atom interactions NBONDS: found 83470 intra-atom interactions NBONDS: found 83473 intra-atom interactions NBONDS: found 83442 intra-atom interactions NBONDS: found 83409 intra-atom interactions NBONDS: found 83406 intra-atom interactions NBONDS: found 83399 intra-atom interactions NBONDS: found 83416 intra-atom interactions NBONDS: found 83412 intra-atom interactions NBONDS: found 83391 intra-atom interactions NBONDS: found 83404 intra-atom interactions NBONDS: found 83415 intra-atom interactions NBONDS: found 83456 intra-atom interactions NBONDS: found 83471 intra-atom interactions NBONDS: found 83475 intra-atom interactions NBONDS: found 83454 intra-atom interactions NBONDS: found 83430 intra-atom interactions NBONDS: found 83389 intra-atom interactions NBONDS: found 83393 intra-atom interactions NBONDS: found 83425 intra-atom interactions NBONDS: found 83455 intra-atom interactions NBONDS: found 83483 intra-atom interactions NBONDS: found 83461 intra-atom interactions NBONDS: found 83425 intra-atom interactions NBONDS: found 83409 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=7112.115 E(kin)=2127.772 temperature=882.360 | | Etotal =4984.344 grad(E)=165.804 E(BOND)=246.798 E(ANGL)=762.534 | | E(IMPR)=3973.826 E(VDW )=1.186 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 8.52581 8.33964 19.31811 velocity [A/ps] : -0.15255 0.08509 -0.35475 ang. mom. [amu A/ps] : -28376.85306 57221.88989 24281.23590 kin. ener. [Kcal/mol] : 3.02319 CNSsolve> CNSsolve> {- turn on all energy terms -} CNSsolve> flags include dihe ? end EFLAGS: the following energy flags are set EFLAGS: BOND ANGL DIHE IMPR VDW CNSsolve> CNSsolve> {- set repel to ~vdw radii -} CNSsolve> parameter PARRDR> nbonds NBDSET> repel=0.89 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=500 nprint=50 end POWELL: number of degrees of freedom= 2427 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 2666 exclusions and 0 interactions(1-4) NBONDS: found 83409 intra-atom interactions NBONDS: found 83434 intra-atom interactions NBONDS: found 83597 intra-atom interactions NBONDS: found 83435 intra-atom interactions NBONDS: found 83471 intra-atom interactions NBONDS: found 83461 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =4219.870 grad(E)=257.216 E(BOND)=312.787 E(ANGL)=962.988 | | E(DIHE)=77.692 E(IMPR)=2798.671 E(VDW )=67.732 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> flags exclude * include bond angl impr dihe vdw end CNSsolve> CNSsolve> {- return masses to something sensible -} CNSsolve> do (mass=refy) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=2195.160 E(kin)=749.274 temperature=310.714 | | Etotal =1445.886 grad(E)=46.759 E(BOND)=312.784 E(ANGL)=963.002 | | E(DIHE)=77.692 E(IMPR)=24.675 E(VDW )=67.733 | ------------------------------------------------------------------------------- NBONDS: found 83423 intra-atom interactions NBONDS: found 83394 intra-atom interactions NBONDS: found 83373 intra-atom interactions NBONDS: found 83381 intra-atom interactions NBONDS: found 83397 intra-atom interactions NBONDS: found 83374 intra-atom interactions NBONDS: found 83409 intra-atom interactions NBONDS: found 83409 intra-atom interactions NBONDS: found 83397 intra-atom interactions NBONDS: found 83400 intra-atom interactions NBONDS: found 83384 intra-atom interactions NBONDS: found 83364 intra-atom interactions NBONDS: found 83349 intra-atom interactions NBONDS: found 83382 intra-atom interactions NBONDS: found 83394 intra-atom interactions NBONDS: found 83431 intra-atom interactions NBONDS: found 83463 intra-atom interactions NBONDS: found 83445 intra-atom interactions NBONDS: found 83442 intra-atom interactions NBONDS: found 83431 intra-atom interactions NBONDS: found 83464 intra-atom interactions NBONDS: found 83462 intra-atom interactions NBONDS: found 83426 intra-atom interactions NBONDS: found 83398 intra-atom interactions NBONDS: found 83409 intra-atom interactions NBONDS: found 83423 intra-atom interactions NBONDS: found 83401 intra-atom interactions NBONDS: found 83423 intra-atom interactions NBONDS: found 83416 intra-atom interactions NBONDS: found 83394 intra-atom interactions NBONDS: found 83375 intra-atom interactions NBONDS: found 83378 intra-atom interactions NBONDS: found 83398 intra-atom interactions NBONDS: found 83406 intra-atom interactions NBONDS: found 83410 intra-atom interactions NBONDS: found 83410 intra-atom interactions NBONDS: found 83413 intra-atom interactions NBONDS: found 83418 intra-atom interactions NBONDS: found 83413 intra-atom interactions NBONDS: found 83419 intra-atom interactions NBONDS: found 83405 intra-atom interactions NBONDS: found 83390 intra-atom interactions NBONDS: found 83387 intra-atom interactions NBONDS: found 83363 intra-atom interactions NBONDS: found 83355 intra-atom interactions NBONDS: found 83366 intra-atom interactions NBONDS: found 83398 intra-atom interactions NBONDS: found 83408 intra-atom interactions NBONDS: found 83410 intra-atom interactions NBONDS: found 83403 intra-atom interactions NBONDS: found 83403 intra-atom interactions NBONDS: found 83375 intra-atom interactions NBONDS: found 83343 intra-atom interactions NBONDS: found 83356 intra-atom interactions NBONDS: found 83349 intra-atom interactions NBONDS: found 83325 intra-atom interactions NBONDS: found 83323 intra-atom interactions NBONDS: found 83334 intra-atom interactions NBONDS: found 83400 intra-atom interactions NBONDS: found 83415 intra-atom interactions NBONDS: found 83409 intra-atom interactions NBONDS: found 83397 intra-atom interactions NBONDS: found 83397 intra-atom interactions NBONDS: found 83374 intra-atom interactions NBONDS: found 83355 intra-atom interactions NBONDS: found 83357 intra-atom interactions NBONDS: found 83343 intra-atom interactions NBONDS: found 83331 intra-atom interactions NBONDS: found 83308 intra-atom interactions NBONDS: found 83318 intra-atom interactions NBONDS: found 83370 intra-atom interactions NBONDS: found 83400 intra-atom interactions NBONDS: found 83428 intra-atom interactions NBONDS: found 83426 intra-atom interactions NBONDS: found 83427 intra-atom interactions NBONDS: found 83419 intra-atom interactions NBONDS: found 83364 intra-atom interactions NBONDS: found 83358 intra-atom interactions NBONDS: found 83350 intra-atom interactions NBONDS: found 83322 intra-atom interactions NBONDS: found 83310 intra-atom interactions NBONDS: found 83310 intra-atom interactions NBONDS: found 83347 intra-atom interactions NBONDS: found 83373 intra-atom interactions NBONDS: found 83397 intra-atom interactions NBONDS: found 83418 intra-atom interactions NBONDS: found 83425 intra-atom interactions NBONDS: found 83429 intra-atom interactions NBONDS: found 83409 intra-atom interactions NBONDS: found 83406 intra-atom interactions NBONDS: found 83389 intra-atom interactions NBONDS: found 83382 intra-atom interactions NBONDS: found 83360 intra-atom interactions NBONDS: found 83323 intra-atom interactions NBONDS: found 83316 intra-atom interactions NBONDS: found 83347 intra-atom interactions NBONDS: found 83373 intra-atom interactions NBONDS: found 83384 intra-atom interactions NBONDS: found 83388 intra-atom interactions NBONDS: found 83390 intra-atom interactions NBONDS: found 83389 intra-atom interactions NBONDS: found 83376 intra-atom interactions NBONDS: found 83361 intra-atom interactions NBONDS: found 83355 intra-atom interactions NBONDS: found 83354 intra-atom interactions NBONDS: found 83327 intra-atom interactions NBONDS: found 83291 intra-atom interactions NBONDS: found 83294 intra-atom interactions NBONDS: found 83297 intra-atom interactions NBONDS: found 83316 intra-atom interactions NBONDS: found 83320 intra-atom interactions NBONDS: found 83321 intra-atom interactions NBONDS: found 83333 intra-atom interactions NBONDS: found 83350 intra-atom interactions NBONDS: found 83363 intra-atom interactions NBONDS: found 83376 intra-atom interactions NBONDS: found 83399 intra-atom interactions NBONDS: found 83389 intra-atom interactions NBONDS: found 83377 intra-atom interactions NBONDS: found 83351 intra-atom interactions NBONDS: found 83340 intra-atom interactions NBONDS: found 83338 intra-atom interactions NBONDS: found 83341 intra-atom interactions NBONDS: found 83349 intra-atom interactions NBONDS: found 83356 intra-atom interactions NBONDS: found 83360 intra-atom interactions NBONDS: found 83352 intra-atom interactions NBONDS: found 83350 intra-atom interactions NBONDS: found 83362 intra-atom interactions NBONDS: found 83367 intra-atom interactions NBONDS: found 83352 intra-atom interactions NBONDS: found 83369 intra-atom interactions NBONDS: found 83375 intra-atom interactions NBONDS: found 83388 intra-atom interactions NBONDS: found 83376 intra-atom interactions NBONDS: found 83355 intra-atom interactions NBONDS: found 83333 intra-atom interactions NBONDS: found 83299 intra-atom interactions NBONDS: found 83289 intra-atom interactions NBONDS: found 83289 intra-atom interactions NBONDS: found 83320 intra-atom interactions NBONDS: found 83373 intra-atom interactions NBONDS: found 83400 intra-atom interactions NBONDS: found 83412 intra-atom interactions NBONDS: found 83431 intra-atom interactions NBONDS: found 83421 intra-atom interactions NBONDS: found 83387 intra-atom interactions NBONDS: found 83360 intra-atom interactions NBONDS: found 83320 intra-atom interactions NBONDS: found 83289 intra-atom interactions NBONDS: found 83306 intra-atom interactions NBONDS: found 83315 intra-atom interactions NBONDS: found 83330 intra-atom interactions NBONDS: found 83363 intra-atom interactions NBONDS: found 83382 intra-atom interactions NBONDS: found 83397 intra-atom interactions NBONDS: found 83393 intra-atom interactions NBONDS: found 83393 intra-atom interactions NBONDS: found 83374 intra-atom interactions NBONDS: found 83370 intra-atom interactions NBONDS: found 83351 intra-atom interactions NBONDS: found 83364 intra-atom interactions NBONDS: found 83393 intra-atom interactions NBONDS: found 83397 intra-atom interactions NBONDS: found 83393 intra-atom interactions NBONDS: found 83380 intra-atom interactions NBONDS: found 83363 intra-atom interactions NBONDS: found 83333 intra-atom interactions NBONDS: found 83340 intra-atom interactions NBONDS: found 83339 intra-atom interactions NBONDS: found 83342 intra-atom interactions NBONDS: found 83353 intra-atom interactions NBONDS: found 83326 intra-atom interactions NBONDS: found 83310 intra-atom interactions NBONDS: found 83292 intra-atom interactions NBONDS: found 83326 intra-atom interactions NBONDS: found 83349 intra-atom interactions NBONDS: found 83386 intra-atom interactions NBONDS: found 83383 intra-atom interactions NBONDS: found 83381 intra-atom interactions NBONDS: found 83357 intra-atom interactions NBONDS: found 83352 intra-atom interactions NBONDS: found 83332 intra-atom interactions NBONDS: found 83318 intra-atom interactions NBONDS: found 83333 intra-atom interactions NBONDS: found 83350 intra-atom interactions NBONDS: found 83381 intra-atom interactions NBONDS: found 83436 intra-atom interactions NBONDS: found 83442 intra-atom interactions NBONDS: found 83410 intra-atom interactions NBONDS: found 83352 intra-atom interactions NBONDS: found 83320 intra-atom interactions NBONDS: found 83334 intra-atom interactions NBONDS: found 83349 intra-atom interactions NBONDS: found 83380 intra-atom interactions NBONDS: found 83388 intra-atom interactions NBONDS: found 83391 intra-atom interactions NBONDS: found 83385 intra-atom interactions NBONDS: found 83363 intra-atom interactions NBONDS: found 83353 intra-atom interactions NBONDS: found 83356 intra-atom interactions NBONDS: found 83331 intra-atom interactions NBONDS: found 83327 intra-atom interactions NBONDS: found 83346 intra-atom interactions NBONDS: found 83366 intra-atom interactions NBONDS: found 83368 intra-atom interactions NBONDS: found 83405 intra-atom interactions NBONDS: found 83413 intra-atom interactions NBONDS: found 83399 intra-atom interactions NBONDS: found 83384 intra-atom interactions NBONDS: found 83361 intra-atom interactions NBONDS: found 83349 intra-atom interactions NBONDS: found 83372 intra-atom interactions NBONDS: found 83400 intra-atom interactions NBONDS: found 83407 intra-atom interactions NBONDS: found 83417 intra-atom interactions NBONDS: found 83432 intra-atom interactions NBONDS: found 83410 intra-atom interactions NBONDS: found 83374 intra-atom interactions NBONDS: found 83331 intra-atom interactions NBONDS: found 83340 intra-atom interactions NBONDS: found 83334 intra-atom interactions NBONDS: found 83384 intra-atom interactions NBONDS: found 83418 intra-atom interactions NBONDS: found 83435 intra-atom interactions NBONDS: found 83420 intra-atom interactions NBONDS: found 83401 intra-atom interactions NBONDS: found 83391 intra-atom interactions NBONDS: found 83357 intra-atom interactions NBONDS: found 83349 intra-atom interactions NBONDS: found 83343 intra-atom interactions NBONDS: found 83353 intra-atom interactions NBONDS: found 83383 intra-atom interactions NBONDS: found 83395 intra-atom interactions NBONDS: found 83414 intra-atom interactions NBONDS: found 83393 intra-atom interactions NBONDS: found 83372 intra-atom interactions NBONDS: found 83345 intra-atom interactions NBONDS: found 83331 intra-atom interactions NBONDS: found 83342 intra-atom interactions NBONDS: found 83375 intra-atom interactions NBONDS: found 83410 intra-atom interactions NBONDS: found 83410 intra-atom interactions NBONDS: found 83399 intra-atom interactions NBONDS: found 83397 intra-atom interactions NBONDS: found 83383 intra-atom interactions NBONDS: found 83391 intra-atom interactions NBONDS: found 83411 intra-atom interactions NBONDS: found 83402 intra-atom interactions NBONDS: found 83385 intra-atom interactions NBONDS: found 83387 intra-atom interactions NBONDS: found 83395 intra-atom interactions NBONDS: found 83364 intra-atom interactions NBONDS: found 83328 intra-atom interactions NBONDS: found 83323 intra-atom interactions NBONDS: found 83347 intra-atom interactions NBONDS: found 83424 intra-atom interactions NBONDS: found 83452 intra-atom interactions NBONDS: found 83473 intra-atom interactions NBONDS: found 83433 intra-atom interactions NBONDS: found 83397 intra-atom interactions NBONDS: found 83374 intra-atom interactions NBONDS: found 83346 intra-atom interactions NBONDS: found 83330 intra-atom interactions NBONDS: found 83356 intra-atom interactions NBONDS: found 83376 intra-atom interactions NBONDS: found 83394 intra-atom interactions NBONDS: found 83421 intra-atom interactions NBONDS: found 83445 intra-atom interactions NBONDS: found 83449 intra-atom interactions NBONDS: found 83447 intra-atom interactions NBONDS: found 83420 intra-atom interactions NBONDS: found 83358 intra-atom interactions NBONDS: found 83347 intra-atom interactions NBONDS: found 83341 intra-atom interactions NBONDS: found 83343 intra-atom interactions NBONDS: found 83352 intra-atom interactions NBONDS: found 83407 intra-atom interactions NBONDS: found 83449 intra-atom interactions NBONDS: found 83449 intra-atom interactions NBONDS: found 83405 intra-atom interactions NBONDS: found 83377 intra-atom interactions NBONDS: found 83377 intra-atom interactions NBONDS: found 83390 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=11157.337 E(kin)=2979.268 temperature=1235.464 | | Etotal =8178.069 grad(E)=142.126 E(BOND)=3947.735 E(ANGL)=1181.764 | | E(DIHE)=2.426 E(IMPR)=2970.215 E(VDW )=75.928 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 9.24748 7.79461 19.90477 velocity [A/ps] : -0.26538 1.21235 -1.43323 ang. mom. [amu A/ps] : -11533.31930 -4056.22622 -527.74969 kin. ener. [Kcal/mol] : 3.63153 CNSsolve> CNSsolve> {- some final minimisation -} CNSsolve> minimize powell POWELL> nstep=500 POWELL> drop=40.0 POWELL> nprint=50 POWELL> end POWELL: number of degrees of freedom= 2427 NBONDS: found 83371 intra-atom interactions NBONDS: found 83404 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =6566.837 grad(E)=402.838 E(BOND)=5.712 E(ANGL)=1126.779 | | E(DIHE)=2.422 E(IMPR)=5364.315 E(VDW )=67.609 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> print thres=0.02 bonds (atom-i |atom-j ) dist. equil. delta energy const. ( 13 NE | 13 HE ) 1.046 0.980 0.066 4.329 1000.000 Number of violations greater 0.020: 1 RMS deviation= 0.003 CNSsolve> print thres=5. angles (atom-i |atom-j |atom-k ) angle equil. delta energy const. ( 13 CD | 13 NE | 13 HE ) 97.545 118.099 -20.553 64.341 500.000 ( 13 HE | 13 NE | 13 CZ ) 138.351 119.249 19.102 55.577 500.000 ( 44 CD | 44 NE | 44 HE ) 68.993 118.099 -49.106 367.278 500.000 ( 44 HE | 44 NE | 44 CZ ) 152.693 119.249 33.444 170.361 500.000 ( 75 CD | 75 NE | 75 HE ) 73.800 118.099 -44.299 298.889 500.000 ( 75 HE | 75 NE | 75 CZ ) 139.660 119.249 20.411 63.452 500.000 Number of violations greater 5.000: 6 RMS deviation= 1.996 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> fix selection=( none ) end SELRPN: 0 atoms have been selected out of 1586 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 0 atoms have been selected out of 1586 SHOW: zero atoms selected NEXTCD: condition evaluated as true SELRPN: 0 atoms have been selected out of 1586 CNSsolve> CNSsolve> if (&set_bfactor=true) then NEXTCD: condition evaluated as false CNSsolve> do (b=&bfactor) ( all ) CNSsolve> else CNSsolve> show ave(b) (known and not(store1)) SELRPN: 777 atoms have been selected out of 1586 SHOW: average of selected elements = 0.000000 CNSsolve> do (b=$result) (store1 and (attr b < 0.01)) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> end if CNSsolve> CNSsolve> if (&set_occupancy=true) then NEXTCD: condition evaluated as false CNSsolve> do (q=&occupancy) ( all ) CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 809 atoms have been selected out of 1586 SHOW: sum over selected elements = 809.000000 NEXTCD: condition evaluated as false CNSsolve> CNSsolve> set remarks=reset end CNSsolve> CNSsolve> buffer message BUFFER> to=remarks BUFFER> dump BUFFER> end CNSsolve> CNSsolve> write coordinates output=&coordinate_outfile end ASSFIL: file 1xxx_2_cns.pdb opened. CNSsolve> CNSsolve>stop ============================================================ Maximum dynamic memory allocation: 967788 bytes Maximum dynamic memory overhead: 848 bytes Program started at: 08:43:06 on 12-Jan-04 Program stopped at: 08:43:27 on 12-Jan-04 CPU time used: 20.8100 seconds ============================================================